Hydrodynamic interactions are transmitted by viscous diffusion and sound propagation, and the temporal evolution of hydrodynamic interactions by both mechanisms is studied using direct numerical simulation in this paper. The hydrodynamic interactions for a system of two particles in a fluid are estimated using the velocity correlation of the particles. In an incompressible fluid, hydrodynamic interactions propagate instantaneously at the infinite speed of sound followed by a temporal evolution due to viscous diffusion. Conversely, sound propagates in a compressible fluid at a finite speed, which affects the temporal evolution of the hydrodynamic interactions through an order-of-magnitude relationship between the time scales of viscous diffusion and sound propagation. The hydrodynamic interactions are characterized by introducing the ratio of these time scales as an interactive compressibility factor.

1.
W.
van Saarloos
and
P.
Mazur
, “
Many-sphere hydrodynamic interactions: II. Mobilities at finite frequencies
,”
Physica A
120
,
77
102
(
1983
).
2.
H. J. H.
Clercx
and
P. P. J. M.
Schram
, “
Retarded hydrodynamic interactions in suspensions
,”
Physica A
174
,
325
354
(
1991
).
3.
S.
Henderson
,
S.
Mitchell
, and
P.
Bartlett
, “
Propagation of hydrodynamic interactions in colloidal suspensions
,”
Phys. Rev. Lett.
88
,
088302
(
2002
).
4.
M.
Atakhorrami
,
G. H.
Koenderink
,
C. F.
Schmidt
, and
F. C.
MacKintosh
, “
Short-time inertial response of viscoelastic fluids: Observation of vortex propagation
,”
Phys. Rev. Lett.
95
,
208302
(
2005
).
5.
S.
Martin
,
M.
Reichert
,
H.
Stark
, and
T.
Gisler
, “
Direct observation of hydrodynamic rotation-translation coupling between two colloidal spheres
,”
Phys. Rev. Lett.
97
,
248301
(
2006
).
6.
Y.
von Hansen
,
A.
Mehlich
,
B.
Pelz
,
M.
Rief
, and
R. R.
Netz
, “
Auto- and cross-power spectral analysis of dual trap optical tweezer experiments using Bayesian inference
,”
Rev. Sci. Instrum.
83
,
095116
(
2012
).
7.
P.
Español
,
M. A.
Rubio
, and
I.
Zúñiga
, “
Scaling of the time-dependent self-diffusion coefficient and the propagation of hydrodynamic interactions
,”
Phys. Rev. E
51
,
803
806
(
1995
).
8.
P.
Español
, “
On the propagation of hydrodynamic interactions
,”
Physica A
214
,
185
206
(
1995
).
9.
Y.
Nakayama
and
R.
Yamamoto
, “
Simulation method to resolve hydrodynamic interactions in colloidal dispersions
,”
Phys. Rev. E
71
,
036707
(
2005
).
10.
Y.
Nakayama
,
K.
Kim
, and
R.
Yamamoto
, “
Simulating (electro) hydrodynamic effects in colloidal dispersions: Smoothed profile method
,”
Eur. Phys. J. E
26
,
361
368
(
2008
).
11.
R.
Tatsumi
and
R.
Yamamoto
, “
Direct numerical simulation of dispersed particles in a compressible fluid
,”
Phys. Rev. E
85
,
066704
(
2012
).
12.
J.
Happel
and
H.
Brenner
,
Low Reynolds Number Hydrodynamics
(
Kluwer Academic
,
Boston
,
1983
).
13.
D. J.
Jeffrey
and
Y.
Onishi
, “
Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow
,”
J. Fluid Mech.
139
,
261
290
(
1984
).
14.
M.
Reichert
and
H.
Stark
, “
Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials
,”
Phys. Rev. E
69
,
031407
(
2004
).
15.
J. D.
Jackson
,
Classical Electrodynamics
, 3rd ed. (
Wiley
,
New York
,
1999
).
16.
B. U.
Felderhof
, “
Transient flow caused by a sudden impulse or twist applied to a sphere immersed in a viscous incompressible fluid
,”
Phys. Fluids
19
,
073102
(
2007
).
17.
B.
Cichocki
and
B. U.
Felderhof
, “
Long-time tails in the solid-body motion of a sphere immersed in a suspension
,”
Phys. Rev. E
62
,
5383
5388
(
2000
).
18.
D.
Bedeaux
and
P.
Mazur
, “
A generalization of Faxén's theorem to nonsteady motion of a sphere through a compressible fluid in arbitrary flow
,”
Physica
78
,
505
515
(
1974
).
19.
B. U.
Felderhof
, “
Transient dipolar sound wave in a viscous compressible fluid
,”
Physica A
389
,
5602
5610
(
2010
).
20.
B. U.
Felderhof
, “
Effect of fluid compressibility on the flow caused by a sudden impulse applied to a sphere immersed in a viscous fluid
,”
Phys. Fluids
19
,
126101
(
2007
).
21.
B. U.
Felderhof
, “
Force density induced on a sphere in linear hydrodynamics: II. Moving sphere, mixed boundary conditions
,”
Physica A
84
,
569
576
(
1976
).
22.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics
(
Butterworth-Heinemann
,
Boston
,
1991
).
You do not currently have access to this content.