A direct numerical simulation of a fully developed turbulent pipe flow was performed to investigate the similarities and differences of very-large-scale motions (VLSMs) to those of turbulent boundary layer (TBL) flows. The Reynolds number was set to ReD = 35 000, and the computational domain was 30 pipe radii in length. Inspection of instantaneous fields, streamwise two-point correlations, and population trends of the momentum regions showed that the streamwise length of the structures in the pipe flow grew continuously beyond the log layer (y/δ < 0.3–0.4) with a large population of long structures (>3δ), and the maximum length of the VLSMs increased up to ∼30δ. Such differences between the TBL and pipe flows arose due to the entrainment of large plumes of the intermittent potential flow in the TBL, creating break-down of the streamwise coherence of the structures above the log layer with the strong swirling strength and Reynolds shear stress. The average streamwise length scale of the pipe flow was approximately 1.5–3.0 times larger than that of the TBL through the log and wake regions. The maximum contribution of the structures to the Reynolds shear stress was observed at approximately 6δ in length, whereas that of the TBL was at 1δ–2δ, indicating a higher contribution of the VLSMs to the Reynolds shear stress in the pipe flow than in the TBL flow.

1.
R. J.
Adrian
,
C. D.
Meinhart
, and
C. D.
Tomkins
, “
Vortex organization in the outer region of the turbulent boundary layer
,”
J. Fluid Mech.
422
,
1
(
2000
).
2.
B.
Ganapathisubramani
,
E. K.
Longmire
, and
I.
Marusic
, “
Characteristics of vortex packets in turbulent boundary layers
,”
J. Fluid Mech.
478
,
35
(
2003
).
3.
J. C.
del Álamo
,
J.
Jiménez
,
P.
Zandonade
, and
R. D.
Moser
, “
Scaling of the energy spectra of turbulent channels
,”
J. Fluid Mech.
500
,
135
(
2004
).
4.
N.
Hutchins
and
I.
Marusic
, “
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers
,”
J. Fluid Mech.
579
,
1
(
2007
).
5.
J. H.
Lee
and
H. J.
Sung
, “
Very-large-scale motions in a turbulent boundary layer
,”
J. Fluid Mech.
673
,
80
(
2011
).
6.
D. J. C.
Dennis
and
T. B.
Nickels
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets
,”
J. Fluid Mech.
673
,
180
(
2011
).
7.
D. J. C.
Dennis
and
T. B.
Nickels
, “
Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures
,”
J. Fluid Mech.
673
,
218
(
2011
).
8.
R. J.
Adrian
, “
Hairpin vortex organization in wall turbulence
,”
Phys. Fluids
19
,
041301
(
2007
).
9.
I.
Marusic
,
B. J.
Mckeon
,
P. A.
Monkewitz
,
H. M.
Nagib
,
A. J.
Smits
, and
K. R.
Sreenivasan
, “
Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues
,”
Phys. Fluids
22
,
065103
(
2010
).
10.
J. P.
Monty
,
J. A.
Stewart
,
R. C.
Williams
, and
M. S.
Chong
, “
Large-scale features in turbulent pipe and channel flows
,”
J. Fluid Mech.
589
,
147
(
2007
).
11.
S. C. C.
Bailey
,
M.
Hultmark
,
A. J.
Smits
, and
M. P.
Schultz
, “
Azimuthal structure of turbulence in high Reynolds number pipe flow
,”
J. Fluid Mech.
615
,
121
(
2008
).
12.
D. J. C.
Dennis
and
T. B.
Nickels
, “
On the limitations of Taylor's hypothesis in constructing long structures in a turbulent boundary layer
,”
J. Fluid Mech.
614
,
197
(
2008
).
13.
K. C.
Kim
and
R. J.
Adrian
, “
Very large-scale motion in the outer layer
,”
Phys. Fluids
11
,
417
(
1999
).
14.
M.
Guala
,
S. E.
Hommema
, and
R. J.
Adrian
, “
Large-scale and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
554
,
521
(
2006
).
15.
B. J.
Balakumar
and
R. J.
Adrian
, “
Large- and very-large-scale motions in channel and boundary-layer flows
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
665
(
2007
).
16.
J.
Jiménez
, “
The largest scales of turbulent wall flows
,”
Center for Turbulence Research, Annual Research Briefs
(
Stanford University
,
1998
), pp.
137
154
.
17.
J. P.
Monty
,
N.
Hutchins
,
H. C. H.
Ng
,
I.
Marusic
, and
M. S.
Chong
, “
A comparison of turbulent pipe, channel and boundary layer flows
,”
J. Fluid Mech.
632
,
431
(
2009
).
18.
J. C.
delÁlamo
and
J.
Jiménez
, “
Estimation of turbulent convection velocities and corrections to Taylor's approximation
,”
J. Fluid Mech.
640
,
5
(
2009
).
19.
X.
Wu
,
J. R.
Baltzer
, and
R. J.
Adrian
, “
Direct numerical simulation of a 30R long turbulent pipe flow at R+ = 685: Large- and very large-scale motions
,”
J. Fluid Mech.
698
,
235
(
2012
).
20.
J.
Kim
, “
Progress in pipe and channel flow turbulence, 1961–2011
,”
J. Turbul.
13
,
1
(
2012
).
21.
J. H.
Lee
and
H. J.
Sung
, “
Direct numerical simulation of a turbulent boundary layer up to Reθ = 2500
,”
Int. J. Heat Fluid Flow
32
,
1
(
2011
).
22.
K.
Kim
,
S. J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations
,”
Int. J. Numer. Methods Fluids
38
,
125
(
2002
).
23.
K.
Akselvoll
and
P.
Moin
, Report No. TF-63, Thermoscience Division, Department of Mechanical Engineering,
Stanford University
,
1995
.
24.
S. J.
Jang
,
H. J.
Sung
, and
P. Å.
Krogstad
, “
Effects of an axisymmetric contraction on a turbulent pipe flow
,”
J. Fluid Mech.
687
,
376
(
2011
).
25.
C.
Chin
,
A. S. H.
Ooi
,
I.
Marusic
, and
H. M.
Blackburn
, “
The influence of pipe length on turbulence statistics computed from direct numerical simulation data
,”
Phys. Fluids
22
,
115107
(
2010
).
26.
X.
Wu
and
P.
Moin
, “
A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow
,”
J. Fluid Mech.
608
,
81
(
2008
).
27.
P.
Schlatter
and
R.
Örlü
, “
Assessment of direct numerical simulation data of turbulent boundary layers
,”
J. Fluid Mech.
659
,
116
(
2010
).
28.
H. M.
Nagib
and
K. A.
Chauhan
, “
Variations of von Karman coefficient in canonical flows
,”
Phys. Fluids
20
,
101518
(
2008
).
29.
J.
Murlis
,
H.
Tsai
, and
P.
Bradshaw
, “
The structure of turbulent boundary layers at low Reynolds numbers
,”
J. Fluid Mech.
122
,
13
(
1982
).
30.
H. C. H.
Ng
,
J. P.
Monty
,
N.
Hutchins
,
M. S.
Chong
, and
I.
Marusic
, “
Comparison of turbulent channel and pipe flows with varying Reynolds number
,”
Exp. Fluids
51
,
1261
(
2011
).
31.
M.
Hultmark
,
S. C. C.
Bailey
, and
A. J.
Smits
, “
Scaling of near-wall turbulence in pipe flow
,”
J. Fluid Mech.
649
,
103
(
2010
).
32.
L. H. O.
Hellström
,
A.
Sinha
, and
A. J.
Smits
, “
Visualizing the very-large-scale motions in turbulent pipe flow
,”
Phys. Fluids
23
,
011703
(
2011
).
33.
J.
Zhou
,
R. J.
Adrian
,
S.
Balachandar
, and
T. M.
Kendall
, “
Mechanisms for generating coherent packets of hairpin vortices
,”
J. Fluid Mech.
387
,
353
(
1999
).
34.
C. D.
Tomkins
and
R. J.
Adrian
, “
Spanwise structure and scale growth in turbulent boundary layers
,”
J. Fluid Mech.
490
,
37
(
2003
).
35.
S. C. C.
Bailey
and
A. J.
Smits
, “
Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow
,”
J. Fluid Mech.
651
,
339
(
2010
).
36.
D. K.
Bisset
,
J. C. R.
Hunt
, and
M. M.
Rogers
, “
The turbulent/non-turbulent interface bounding a far wake
,”
J. Fluid Mech.
451
,
383
(
2002
).
37.
S.
Corrsin
and
A. L.
Kistler
, “
Free-stream boundaries of turbulent flows
,” Technical Report No. 1244, NACA,
1955
.
38.
J.
Jiménez
,
S.
Hoyas
,
M. P.
Simens
, and
Y.
Mizuno
, “
Turbulent boundary layers and channels at moderate Reynolds numbers
,”
J. Fluid Mech.
657
,
335
(
2010
).
39.
Y.
Wu
and
K. T.
Christensen
, “
Population trends of spanwise vortices in wall turbulence
,”
J. Fluid Mech.
568
,
55
(
2006
).
40.
N.
Hutchins
,
W. T.
Hambleton
, and
I.
Marusic
, “
Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers
,”
J. Fluid Mech.
541
,
21
(
2005
).
41.
B.
Ganapathisubramani
,
N.
Hutchins
,
W. T.
Hambleton
,
E. K.
Longmire
, and
I.
Marusic
, “
Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
,”
J. Fluid Mech.
524
,
57
(
2005
).
42.
N.
Hutchins
and
I.
Marusic
, “
Large-scale influences in near-wall turbulence
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
647
(
2007
).
You do not currently have access to this content.