The linear stability dynamics of incompressible and compressible isothermal jets are investigated by means of their optimal initial perturbations and of their temporal eigenmodes. The transient growth analysis of optimal perturbations is robust and allows physical interpretation of the salient instability mechanisms. In contrast, the modal representation appears to be inadequate, as neither the computed eigenvalue spectrum nor the eigenmode shapes allow a characterization of the flow dynamics in these settings. More surprisingly, numerical issues also prevent the reconstruction of the dynamics from a basis of computed eigenmodes. An investigation of simple model problems reveals inherent problems of this modal approach in the context of a stable convection-dominated configuration. In particular, eigenmodes may exhibit an exponential growth in the streamwise direction even in regions where the flow is locally stable.

1.
D.
Barkley
, “
Linear analysis of the cylinder wake mean flow
,”
Europhys. Lett.
75
,
750
756
(
2006
).
2.
S.
Bagheri
,
P.
Schlatter
,
P.
Schmid
, and
D.
Henningson
, “
Global stability of a jet in crossflow
,”
J. Fluid Mech.
624
,
33
(
2009
).
3.
U.
Ehrenstein
and
F.
Gallaire
, “
Two-dimensional global low-frequency oscillations in a separating boundary-layer flow
,”
J. Fluid Mech.
614
,
315
(
2008
).
4.
P.
Meliga
,
J.
Chomaz
, and
D.
Sipp
, “
Global mode interaction and pattern selection in the wake of a disk: A weakly nonlinear expansion
,”
J. Fluid Mech.
633
,
159
(
2009
).
5.
M.
Navarro
,
L.
Witkowski
,
L.
Tuckerman
, and
P. L.
Quéré
, “
Building a reduced model for nonlinear dynamics in Rayleigh-Bénard convection with counter-rotating disks
,”
Phys. Rev. E
81
,
036323
(
2010
).
6.
O.
Marquet
,
D.
Sipp
, and
L.
Jacquin
, “
Sensitivity analysis and passive control of cylinder flow
,”
J. Fluid Mech.
615
,
221
252
(
2008
).
7.
E.
Akervik
,
J.
Hoepffner
,
U.
Ehrenstein
, and
D.
Henningson
, “
Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes
,”
J. Fluid Mech.
579
,
305
(
2007
).
8.
A.
Barbagallo
,
D.
Sipp
, and
P.
Schmid
, “
Inputoutput measures for model reduction and closed-loop control: Application to global modes
,”
J. Fluid Mech.
685
,
23
53
(
2011
).
9.
P.
Huerre
and
P.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
10.
J.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
392
(
2005
).
11.
L.
Lesshafft
,
P.
Huerre
,
P.
Sagaut
, and
M.
Terracol
, “
Nonlinear global modes in hot jets
,”
J. Fluid Mech.
554
,
393
409
(
2006
).
12.
L.
Lesshafft
,
P.
Huerre
, and
P.
Sagaut
, “
Frequency selection in globally unstable round jets
,”
Phys. Fluids
19
,
054108
(
2007
).
13.
S.
Crow
and
F.
Champagne
, “
Orderly structure in jet turbulence
,”
J. Fluid Mech.
48
,
547
(
1971
).
14.
D.
Bodony
and
S.
Lele
, “
On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets
,”
Phys. Fluids
17
,
085103
(
2005
).
15.
A.
Cooper
and
D.
Crighton
, “
Global modes and superdirective acoustic radiation in low-speed axisymmetric jets
,”
Eur. J. Mech. B/Fluids
19
,
559
574
(
2000
).
16.
C.
Moore
, “
The role of shear-layer instability waves in jet exhaust noise
,”
J. Fluid Mech.
80
,
321
(
1977
).
17.
J.
Nichols
and
S.
Lele
, “
Non-normal global modes of high-speed jets
,”
Int. J. Spray Combust. Dyn.
3
,
285
302
(
2011
).
18.
J.
Nichols
and
S.
Lele
, “
Global mode analysis of turbulent high-speed jets
,”
Annual Research Briefs 2010
(
Center for Turbulence Research
,
2010
).
19.
D.
Barkley
,
M.
Gomes
, and
R.
Henderson
, “
Three-dimensional instability in flow over a backward-facing step
,”
J. Fluid Mech.
473
,
167
(
2002
).
20.
O.
Tammisola
, “
Linear stability of plane wakes and liquid jets: Global and local approach
,” Ph.D. dissertation (
KTH Mechanics
,
2009
).
21.
O.
Tammisola
,
F.
Lundell
, and
L.
Soderberg
, “
Effect of surface tension on global modes of confined wake flows
,”
Phys. Fluids
23
,
014108
(
2011
).
22.
U.
Ehrenstein
and
F.
Gallaire
, “
On two-dimensional temporal modes in spatially evolving open flows: The flat-plate boundary layer
,”
J. Fluid Mech.
536
,
209
218
(
2005
).
23.
C.
Heaton
,
J.
Nichols
, and
P.
Schmid
, “
Global linear stability of the non-parallel batchelor vortex
,”
J. Fluid Mech.
629
,
139
(
2009
).
24.
L.
Trefethen
,
A.
Trefethen
,
S.
Reddy
, and
T.
Driscoll
, “
Hydrodynamic stability without eigenvalues
,”
Science
261
,
578
584
(
1993
).
25.
P.
Schmid
, “
Nonmodal stability theory
,”
Annu. Rev. Fluid Mech.
39
,
129
162
(
2007
).
26.
E.
Akervik
,
U.
Ehrenstein
,
F.
Gallaire
, and
D.
Henningson
, “
Global two-dimensional stability measures of the flat plate boundary-layer flow
,”
Eur. J. Mech. B/Fluids
27
,
501
513
(
2008
).
27.
B.
Farrell
and
A.
Moore
, “
An adjoint method for obtaining the most rapidly growing perturbation to oceanic flows
,”
J. Phys. Oceanogr.
22
,
338
349
(
1992
).
28.
K.
Butler
and
B.
Farrell
, “
Three-dimensional optimal perturbations in viscous shear flow
,”
Phys. Fluids A
4
,
1637
(
1992
).
29.
S.
Reddy
and
L.
Trefethen
, “
Pseudospectra of the convection-diffusion operator
,”
SIAM J. Appl. Math.
54
,
1634
(
1994
).
30.
C.
Cossu
and
J.
Chomaz
, “
Global measures of local convective instabilities
,”
Phys. Rev. Lett.
78
,
4387
4390
(
1997
).
31.
P.
Huerre
and
P.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
168
(
1985
).
32.
S.
Reddy
and
D.
Henningson
, “
Energy growth in viscous channel flows
,”
J. Fluid Mech.
252
,
209
238
(
1993
).
33.
E.
Dick
, “
Introduction to finite element methods in computational fluid dynamics
,” in
Computational Fluid Dynamics
, edited by
J.
Wendt
(
Springer
,
Berlin
,
2009
), pp.
235
274
.
34.
T.
Matsushima
and
P.
Marcus
, “
A spectral method for polar coordinates
,”
J. Comput. Phys.
120
,
365
374
(
1995
).
35.
C.
Bogey
and
C.
Bailly
, “
Three-dimensional non-reflective boundary conditions for acoustic simulations: Far field formulation and validation test cases
,”
Acta Acust.
88
,
463
471
(
2002
).
36.
P.
Monkewitz
and
K.
Sohn
, “
Absolute instability in hot jets
,”
AIAA J.
26
,
911
916
(
1988
).
37.
X.
Garnaud
,
L.
Lesshafft
, and
P.
Huerre
, “
Global linear stability of a model subsonic jet
,” AIAA Paper No. 2011-3608
2011
.
38.
W.
Reynolds
and
A.
Hussain
, “
The mechanics of an organized wave in turbulent shear flow. Part 3. theoretical models and comparisons with experiments
,”
J. Fluid Mech.
54
,
263
(
1972
).
39.
V.
Kitsios
,
L.
Cordier
,
J.
Bonnet
,
A.
Ooi
, and
J.
Soria
, “
Development of a nonlinear eddy-viscosity closure for the triple-decomposition stability analysis of a turbulent channel
,”
J. Fluid Mech.
664
,
74
107
(
2010
).
40.
J.
Crouch
,
A.
Garbaruk
, and
D.
Magidov
, “
Predicting the onset of flow unsteadiness based on global instability
,”
J. Comput. Phys.
224
,
924
940
(
2007
).
41.
D.
Crighton
and
M.
Gaster
, “
Stability of slowly diverging jet flow
,”
J. Fluid Mech.
77
,
397
(
1976
).
42.
K.
Gudmundsson
and
T.
Colonius
, “
Instability wave models for the near-field fluctuations of turbulent jets
,”
J. Fluid Mech.
689
,
97
128
(
2011
).
43.
F.
Hecht
, “
Freefem++ manual, third edition, version 3.16-1
,” Technical Report (
Université Pierre et Marie Curie
, Paris, France,
2011
).
44.
P.
Amestoy
,
I.
Duff
, and
J.-Y.
L'Excellent
, “
Multifrontal parallel distributed symmetric and unsymmetric solvers
,”
Comput. Methods Appl. Math.
184
,
501
520
(
2000
).
45.
S.
Balay
,
K.
Buschelman
,
V.
Eijkhout
,
W.
Gropp
,
D.
Kaushik
,
M.
Knepley
,
L. C.
McInnes
,
B.
Smith
, and
H.
Zhang
, “
PETSc users manual
,” Technical Report ANL-95/11, Revision 3.0.0 (Mathematics and Computer Science Division,
Argonne National Laboratory
,
2008
).
46.
V.
Hernandez
,
J.
Roman
, and
V.
Vidal
, “
SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems
,”
ACM Trans. Math. Softw.
31
,
351
362
(
2005
).
47.
R.
Lehoucq
,
D.
Sorensen
, and
C.
Yang
,
ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods
(
SIAM
,
1998
).
48.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
,
194
214
(
2004
).
49.
C.
Mack
and
P.
Schmid
, “
A preconditioned krylov technique for global hydrodynamic stability analysis of large-scale compressible flows
,”
J. Comput. Phys.
229
,
541
560
(
2010
).
50.
X.
Garnaud
,
L.
Lesshafft
,
P.
Schmid
, and
J.
Chomaz
, “
A relaxation method for large eigenvalue problems, with an application to flow stability analysis
,”
J. Comput. Phys.
231
,
3912
(
2012
).
51.
M.
Fosas de Pando
,
D.
Sipp
, and
P.
Schmid
, “
Efficient evaluation of the direct and adjoint linearized dynamics from compressible flow solvers
,”
J. Comput. Phys.
231
,
7739
7755
(
2012
).
52.
A.
Hanifi
,
P.
Schmid
, and
D.
Henningson
, “
Transient growth in compressible boundary layer flow
,”
Phys. Fluids
8
,
826
837
(
1996
).
53.
A.
Michalke
, “
Survey on jet instability theory
,”
Prog. Aerosp. Sci.
21
,
159
199
(
1984
).
54.
M.
Landahl
, “
A note on an algebraic instability of inviscid parallel shear flows
,”
J. Fluid Mech.
98
,
243
(
1980
).
55.
D.
Jones
and
J.
Morgan
, “
The instability of a vortex sheet on a subsonic stream under acoustic radiation
,”
Math. Proc. Cambridge Philos. Soc.
72
,
465
(
1972
).
56.
D.
Crighton
and
F.
Leppington
, “
Radiation properties of the semi-infinite vortex sheet: The initial-value problem
,”
J. Fluid Mech.
64
,
393
(
1974
).
57.
M.
Barone
and
S.
Lele
, “
Receptivity of the compressible mixing layer
,”
J. Fluid Mech.
540
,
301
335
(
2005
).
58.
L.
Lesshafft
,
P.
Huerre
, and
P.
Sagaut
, “
Aerodynamic sound generation by global modes in hot jets
,”
J. Fluid Mech.
647
,
473
489
(
2010
).
59.
P.
Schmid
and
D.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
60.
I.
Orlanski
, “
A simple boundary condition for unbounded hyperbolic flows
,”
J. Comput. Phys.
21
,
251
269
(
1976
).
61.
W.
Criminale
,
T.
Jackson
, and
R.
Joslin
,
Theory and Computation of Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge, England
,
2003
).
62.
For m = 0 the linearized Navier–Stokes operator is real, so only eigenvalues with ωr ⩾ 0 need to be considered.
You do not currently have access to this content.