In this paper, we used a three-dimensional discrete-grain model (Grains3D) to explore the flow and deposit characteristics of unchannelized dam-break collapses. A series of numerical experiments was performed to predict the behaviour of different granular columns (characterized by different initial aspect ratio a, varying from 0.5 to 18). As observed previously in similar channelized dam-break flows and axisymmetric slumps, the phenomenology of the collapse depends strongly on a, revealing different flow regimes. Small collapsing heaps (a ≲ 3) develop shallow cascades that form deposits characterized by a tail extended by a rounded frontal region. Instead, tall avalanching columns (a ≳ 3) generate dense, fast-moving currents that form a circular final deposit that resembles to those obtained from axisymmetric columns. The conversion from vertical to horizontal momentum was observed to be more efficient in these flows. The aggrading inner tapering region of static grains developed during the flow increases the number of final cascades necessary to adjust the slope of the final deposit, extending the total flow duration from 3 τc in dam-break flows to 7 τc in unchannelized ones. Surprisingly, mean aggradation velocities measured at different locations were observed to be independent of the lateral position, depending primarily on the longitudinal distance from reservoir and the initial aspect ratio. Scaled deposit widths and runouts revealed different power-law dependences on a, exposing a non-isotropic behaviour which tends to form a smooth transition from channelized dam-break flows to axisymmetric slumps.

1.
E.
Lajeunesse
,
J. B.
Monnier
, and
G. M.
Homsy
, “
Spreading of a granular mass on a horizontal plane
,”
Phys. Fluids
17
,
103302
(
2005
).
2.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M.
Hallworth
, “
Axisymmetric collapse of granular columns
,”
J. Fluid Mech.
508
,
175
(
2005
).
3.
N. J.
Balmforth
and
R. R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
(
2005
).
4.
S. B.
Savage
and
K.
Hutter
, “
The motion of a finite mass of granular material down a rough incline
,”
J. Fluid Mech.
199
,
177
(
1989
).
5.
K.
Hutter
,
M.
Siegel
,
S. B.
Savage
, and
Y.
Nohguchi
, “
Two-dimensional spreading of a granular avalanche down an inclined plane
,”
Acta Math. Acad. Sci. Hung.
100
,
37
(
1993
).
6.
O.
Pouliquen
and
Y.
Forterre
, “
Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane
,”
J. Fluid Mech.
453
,
131
(
2002
).
7.
E. B.
Pitman
,
C. C.
Nichita
,
A.
Patra
,
A.
Bauer
,
M.
Sheridan
, and
M. I. B.
Bursik
, “
Computing granular avalanches and landslides
,”
Phys. Fluids
15
,
3638
(
2003
).
8.
N.
Taberlet
,
P.
Richard
,
A.
Valance
,
R.
Delannay
,
W.
Losert
,
J. M.
Pasini
, and
J. T.
Jenkins
, “
Super stable granular heap in thin channel
,”
Phys. Rev.
91
,
264301
(
2003
).
9.
O.
Pouliquen
, “
Velocity correlations in dense granular flows
,”
Phys. Rev. Lett.
93
,
248001
(
2004
).
10.
GDR
Midi
, “
On dense granular flows
,”
Eur. Phys. J. E
14
,
341
365
(
2004
).
11.
R. R.
Kerswell
, “
Dam break with Coulomb friction: A model for granular slumping?
,”
Phys. Fluids
17
,
057101
(
2005
).
12.
A.
Mangeney-Castelnau
,
F.
Bouchut
,
J. P.
Vilotte
,
E.
Lajeunesse
, and
A.
Aubertin
, “
On the use of Saint-Venant equations for simulating the spreading of a granular mass
,”
J. Geophys. Res.
110
,
B09103
, doi: (
2005
).
13.
K.
Hutter
,
T.
Koch
,
C.
Pluss
, and
S. B.
Savage
, “
The dynamics of avalanches of granular materials from initiation to runout. Part. II: Experiments
,”
Acta Mech.
109
,
127
(
1995
).
14.
A. J.
Hogg
, “
Lock-release gravity currents and dam-break flows
,”
J. Fluid Mech.
569
,
61
87
(
2006
).
15.
E.
Larrieu
,
L.
Staron
, and
E. J.
Hinch
, “
Raining into shallow water as a description of the collapse of a column of grains
,”
J. Fluid Mech.
554
,
259
270
(
2006
).
16.
E. E.
Doyle
,
H. E.
Huppert
,
G.
Lube
,
H. M.
Mader
, and
R. S. J.
Sparks
, “
Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model
,”
Phys. Fluids
19
,
106601
(
2007
).
17.
P.
Jop
,
Y.
Forterre
, and
O.
Pouliquen
, “
Crucial role of sidewalls in granular surface flows: consequences for the rheology
,”
J. Fluid Mech.
541
,
167
192
(
2005
).
18.
G. B.
Crosta
,
S.
Imposimato
,
D.
Roddeman Wright
,
R. Y.
Yang
,
B. H.
Xu
, and
A. B.
Yu
, “
Numerical modeling of 2-D granular step collapse on erodible and non-erodible surface
,”
J. Geophys. Res.
114
,
F03020
, doi: (
2009
).
19.
P. Y.
Lagrée
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with the μ(I) rheology
,”
J. Fluid Mech.
686
,
378
408
(
2011
).
20.
R.
Zenit
, “
Computer simulations of the collapse of a granular column
,”
Phys. Fluids
17
,
031703
(
2005
).
21.
L.
Staron
and
E. J.
Hinch
, “
Study of the collapse of granular columns using two-dimensional discrete-grain simulation
,”
J. Fluid Mech.
545
,
1
(
2005
).
22.
L.
Lacaze
and
R. R.
Kerswell
, “
Axisymmetric granular collapse: A transient 3D flow test of viscoplasticity
,”
Phys. Rev. Lett.
102
,
108305
(
2009
).
23.
Y.
Grasselli
and
H. J.
Herrmann
, “
On the angles of dry granular heaps
,”
Physica A
246
,
301
312
(
1997
).
24.
A.
Wachs
,
L.
Girolami
,
G.
Vinay
, and
G.
Ferrer
, “
Grains3D, a flexible DEM approach for particles of arbitrary convex shape - Part I: Numerical model and validations
,”
Powder Technol.
224
,
374
389
(
2012
).
25.
H.
Tapia-McClung
and
R.
Zenit
, “
Computer simulations of the collapse of columns formed by elongated grains
,”
Phys. Rev. E
85
,
061304
(
2012
).
26.
L.
Girolami
,
V.
Hergault
,
G.
Vinay
, and
A.
Wachs
, “
A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: Comparison between numerical results and experiments
,”
Granular Matter
14
,
381
392
(
2012
).
27.
G.
Lube
,
H. E.
Herbert
,
R. S. J.
Sparks
, and
A.
Freundt
, “
Collapses of two-dimensional granular columns
,”
Phys. Rev.
72
,
041301
(
2005
).
28.
A.
Daerr
and
S.
Douady
, “
Sensitivity of granular surface flows to preparation
,”
Europhys. Lett.
47
,
324
(
1999
).
29.
Y. C.
Zhou
,
B. D.
Wright
,
R. Y.
Yang
,
B. H.
Xu
, and
A. B.
Yu
, “
Rolling friction in the dynamic simulation of sandpile formation
,”
Phys. A.
269
,
536
553
(
1999
).
30.
P. A.
Cundall
, “
A computer model for rock-mass behaviour using interactive graphics for the input and output of geometric data
,” U.S. Nat. Tech. Inf. Serv. Rep. No. AD/A-001, 602,
1974
.
31.
P. A.
Cundall
and
O.
Strack
, “
Discrete numerical model for granular assemblies
,”
Geotechnique
29
,
47
65
(
1979
).
32.
C. S.
Campbell
, “
Rapid granular flows
,”
Annu. Rev. Fluid Mech.
22
,
57
92
(
1990
).
33.
G. C.
Barker
, “
Computer simulations of granular materials
,” in
Granular Matter: An Inter-Disciplinary Approach
, edited by
A.
Mehta
(
Springer, Inc.
,
New York
,
1994
), p.
317
.
34.
O. R.
Walton
, “
Numerical simulation of inelastic frictional particle-particle interaction
,” in
Particulate Two-phase Flow
, edited by
M. C.
Roco
(
Butterworth-Heinemann
,
Boston
,
1994
), p.
1002
.
35.
D.
Kadau
and
H. J.
Herrmann
, “
Density profiles of loose and collapsed cohesive granular structures generated by ballistic deposition
,”
Phys. Rev. E
83
,
031301
(
2011
).
36.
L.
Lacaze
,
J.
Phillips
, and
R. R.
Kerswell
, “
Planar collapse of a granular column: Experiments and discrete-element simulations
,”
Phys. Fluids
20
,
063302
(
2008
).
You do not currently have access to this content.