This document presents theoretical and numerical results of the circular hydraulic jump derived from the inertial lubrication theory [N. O. Rojas, M. Argentina, E. Cerda, and E. Tirapegui, Phys. Rev. Lett.104, 18780111878014 (2010)] https://doi.org/10.1103/PhysRevLett.104.187801. In particular, a correction for the hydraulic jump scaling is obtained. The results depend on subcritical depth, density, and surface tension, in agreement with experimental data at low Reynolds numbers [T. Bohr, C. Ellegaard, A. E. Hansen, and A. Haaning, Physica B228, 110 (1996) https://doi.org/10.1016/S0921-4526(96)00373-0; S. H. Hansen, S. Horluck, D. Zauner, P. Dimon, C. Ellegaard, and S. C. Creagh, Phys. Rev. E55, 70487061 (1997)] https://doi.org/10.1103/PhysRevE.55.7048.

1.
G.
Bidone
, “
Experiences sur le remou et sur la propagation des ondes
,”
Mem. Acad. R. Sci. Turin
25
,
21
112
(
1820
).
2.
Lord
Rayleigh
, “
On the theory of long waves and bores
,”
Proc. R. Soc. London, Ser. A
90
,
324
328
(
1914
).
3.
I.
Tani
, “
Water jump in the boundary layer
,”
J. Phys. Soc. Jpn.
4
,
212
215
(
1949
).
4.
E. J.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
5.
R. I.
Bowles
and
F. T.
Smith
, “
The standing hydraulic jump: Theory, computations and comparisons with experiments
,”
J. Fluid Mech.
242
,
145
168
(
1992
).
6.
A. D. D.
Craik
,
R. C.
Latham
,
M. J.
Fawkes
, and
P. W. F.
Gribbon
, “
The circular hydraulic jump
,”
J. Fluid Mech.
112
,
347
362
(
1981
).
7.
R. P.
Godwin
, “
The hydraulic jump (shocks and viscous flow in the kitchen sink)
,”
Am. J. Phys.
61
,
829
832
(
1993
).
8.
Y.
Brechet
and
Z.
Néda
, “
On the circular hydraulic jump
,”
Am. J. Phys.
67
,
723
731
(
1999
).
9.
T.
Bohr
,
P.
Dimon
, and
V.
Putkaradze
, “
Shallow-water approach to the circular hydraulic jump
,”
J. Fluid Mech.
254
,
635
648
(
1993
).
10.
R. P.
Kate
,
P. K.
Das
, and
S.
Chakraborty
, “
Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface
,”
J. Fluid Mech.
573
,
247
263
(
2007
).
11.
T.
Bohr
,
C.
Ellegaard
,
A. E.
Hansen
, and
A.
Haaning
, “
Hydraulic jumps, flow separation and wave breaking: An experimental study
,”
Physica B
228
,
1
10
(
1996
).
12.
C.
Ellegaard
,
A. E.
Hansen
,
A. H.
Haaning
, and
T.
Bohr
, “
Experimental results on flow separation and transitions in the circular hydraulic Jump
,”
Phys. Scr.
T67
,
105
110
(
1996
).
13.
J. W. M.
Bush
and
J. M.
Aristoff
, “
The influence of surface tension on the circular hydraulic jump
,”
J. Fluid Mech.
489
,
229
238
(
2003
).
14.
N. O.
Rojas
,
M.
Argentina
,
E.
Cerda
, and
E.
Tirapegui
, “
Inertial lubrication theory
,”
Phys. Rev. Lett.
104
,
187801
1
187801
4
(
2010
).
15.
S. H.
Hansen
,
S.
Horluck
,
D.
Zauner
,
P.
Dimon
,
C.
Ellegaard
, and
S. C.
Creagh
, “
Geometric orbits of surface waves from a circular hydraulic jump
,”
Phys. Rev. E
55
,
7048
7061
(
1997
).
16.
N. O.
Rojas
,
M.
Argentina
,
E.
Cerda
, and
E.
Tirapegui
, “
Faraday patterns in lubricated thin films
,”
Eur. Phys. J. D
62
,
25
31
(
2011
).
17.
J. W. M.
Bush
,
J. M.
Aristoff
, and
A. E.
Hosoi
, “
An experimental investigation of the stability of the circular hydraulic jump
,”
J. Fluid Mech.
558
,
33
52
(
2006
).
18.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J. L.
Hansen
, and
S.
Watanabe
, “
Cover illustration: Polygonal hydraulic jumps
,”
Nonlinearity
12
,
1
7
(
1999
).
19.
C.
Ellegaard
,
A.
Hansen
,
A.
Haaning
,
A.
Marcussen
,
T.
Bohr
,
T.
Hansen
, and
S.
Watanabe
, “
Creating corners in kitchen sink flows
,”
Nature
392
,
767
768
(
1998
).
20.
E. A.
Martens
,
S.
Watanabe
, and
T.
Bohr
, “
Model for polygonal hydraulic jumps
,”
Phys. Rev. E
85
,
036316
1
036316
14
(
2012
).
21.
As the final height is not provided for the surface velocity in Refs. 11 and 12, we assume a final depth higher than 2.77 mm as the height difference d0 from the plate to the top of the rim is d0 = 1.1 mm.
22.
G. B.
Whitham
,
Linear and Nonlinear Waves
(
Wiley
,
New York
,
1974
).
23.
F.
White
,
Fluid Mechanics
(
McGraw-Hill
,
Boston
,
2006
).
24.
H.
Chanson
, “
Current knowledge in hydraulic jumps and related phenomena: A survey of experimental results
,”
Eur. J. Mech. B/Fluids
28
(
2
),
191
210
(
2009
).
25.
In this work we use ζ = 1, in the limit of abrupt jumps (strong slope jumps).
26.
A. R.
Kasimov
, “
A stationary circular hydraulic jump, the limits of its existence and its gasdynamic analogue
,”
J. Fluid Mech.
601
,
189
198
(
2008
).
You do not currently have access to this content.