Armored interfaces refer to fluid interfaces on which a compact monolayer of particles is adsorbed. In this paper, we probe their robustness under impact. For such an investigation, the impact of a drop (covered or not by particles) on a flat armored interface is considered. Two regimes are observed: small drops impacting at low velocities do not coalesce, while bigger drops falling at higher velocities lead to coalescence. The coalescence which occurs when the impacting drop has just reached its maximum extension directly results from the formation of bare regions within the armor. We therefore propose a geometric criterion to describe this transition. This simple modeling is able to capture the dependence of the measured velocity threshold with particle size and drop diameter. The additional robustness experienced by double armors (both drop and puddle covered) results in an increase of the measured velocity threshold, which is quantitatively predicted.

1.
W.
Ramsden
, “
Separation of solids in the surface-layers of solutions and suspensions
,”
Proc. R. Soc. London
72
,
156
(
1903
).
2.
S. U.
Pickering
, “
Emulsions
,”
J. Chem. Soc.
91
,
2001
(
1907
).
3.
B. D.
Johnson
and
R. C.
Cooke
, “
Generation of stabilized microbubbles in seawater
,”
Science
213
,
209
(
1981
).
4.
S. I.
Kam
and
W. R.
Rossen
, “
Anomalous capillary pressure, stress, and stability of solids-coated bubbles
,”
J. Colloid Interface Sci.
213
,
329
(
1999
).
5.
M.
Abkarian
,
A. B.
Subramaniam
,
S. H.
Kim
,
R. J.
Larsen
,
S. M.
Yang
, and
H. A.
Stone
, “
Dissolution arrest and stability of particle-covered bubbles
,”
Phys. Rev. Lett.
99
,
188301
(
2007
).
6.
A. B.
Subramaniam
,
M.
Abkarian
, and
H. A.
Stone
, “
Controlled assembly of jammed colloidal shells on fluid droplets
,”
Nature Mater.
4
,
553
(
2005
).
7.
A. B.
Subramaniam
,
M.
Abkarian
,
L.
Mahadevan
, and
H. A.
Stone
, “
Non-spherical bubbles
,”
Nature (London)
438
,
930
(
2005
).
8.
A. B.
Subramaniam
,
M.
Abkarian
,
L.
Mahadevan
, and
H. A.
Stone
, “
Mechanics of interfacial composite materials
,”
Langmuir
22
,
10204
(
2006
).
9.
P.
Aussillous
and
D.
Quéré
, “
Liquid marbles
,”
Nature (London)
411
,
924
(
2001
).
10.
P.
Aussillous
and
D.
Quéré
, “
Properties of liquid marbles
,”
Proc. R. Soc. London, Ser. A
462
,
973
(
2006
).
11.
G.
McHale
and
M. I.
Newton
, “
Liquid marbles: Principles and applications
,”
Soft Matter
7
,
5473
(
2011
).
12.
S.
Fujii
,
P. D.
Iddon
,
A. J.
Ryan
, and
S. P.
Armes
, “
Aqueous particulate foams stabilized solely with polymer latex particles
,”
Langmuir
22
,
7512
(
2006
).
13.
B. P.
Binks
and
R.
Murakami
, “
Phase inversion of particle-stabilized materials from foams to dry water
,”
Nature Mater.
5
,
865
(
2006
).
14.
A.
Stocco
,
E.
Rio
,
B. P.
Binks
, and
D.
Langevin
, “
Aqueous foams stabilized solely by particles
,”
Soft Matter
7
,
1260
(
2011
).
15.
A.
Stocco
,
F.
Garcia-Moreno
,
I.
Manke
,
J.
Banhart
, and
D.
Langevin
, “
Particle-stabilised foams: Structure and aging
,”
Soft Matter
7
,
631
(
2011
).
16.
A. Cervantes
Martinez
,
E.
Rio
,
G.
Delon
,
A.
Saint-Jalmes
,
D.
Langevin
, and
B. P.
Binks
, “
On the origin of the remarkable stability of aqueous foams stabilised by nanoparticles: Link with microscopic surface properties
,”
Soft Matter
4
,
1531
(
2008
).
17.
T. S.
Horozov
, “
Foams and foam films stabilised by solid particles
,”
Curr. Opin. Colloid Interface Sci.
13
,
134
(
2008
).
18.
L.
Forny
,
I.
Pezron
,
K.
Saleh
,
P.
Guigon
, and
L.
Komunjer
, “
Storing water in powder form by self-assembling hydrophobic silica nanoparticles
,”
Powder Technol.
171
,
15
(
2007
).
19.
H.
Brunner
,
D.
Schutte
, and
F.-T.
Schmitz
, “
Predominantly aqueous compositions in a fluffy powdery form approximating powdered solids behaviour and process for doing the same
,” patent DE1467023,
1969
.
20.
S.
Hasenzahl
,
A.
Gray
,
E.
Walzer
, and
A.
Braunagel
, “
Dry water for the skin
,”
SOEFW J.
131
,
1
(
2005
).
21.
E.
Bormashenko
and
A.
Musin
, “
Revealing of water surface pollution with liquid marbles
,”
Appl. Surf. Sci.
255
,
6429
(
2009
).
22.
J.
Tian
,
T.
Arbatan
,
X.
Li
, and
W.
Shen
, “
Liquid marble for gas sensing
,”
Chem. Commun.
46
,
4734
(
2010
).
23.
G.
McHale
,
D. L.
Herbertson
,
S. J.
Elliott
,
N. J.
Shirtcliffe
, and
M. I.
Newton
, “
Electrowetting of nonwetting liquids and liquid marbles
,”
Langmuir
23
,
918
(
2007
).
24.
L. C.
Gao
and
T.
McCarthy
, “
Ionic liquid marbles
,”
Langmuir
23
,
10445
(
2007
).
25.
N. D.
Denkov
,
B. I.
Ivanov
,
P. A.
Kralchevsky
, and
D. T.
Wasan
, “
A possible mechanism of stabilization of emulsions by solid particles
,”
J. Colloid Interface Sci.
150
,
589
(
1992
).
26.
G.
Kaptay
, “
Interfacial criteria for stabilization of liquid foams by solid particles
,”
Colloids Surf., A
230
,
67
(
2003
).
27.
T. S.
Horozov
,
R.
Aveyard
, and
J. H.
Clint
, “
Particle zips: Vertical emulsion films with particle monolayers at their surfaces
,”
Langmuir
21
(
6
),
2330
(
2005
).
28.
G.
Morris
,
M. R.
Pursell
,
S. J.
Neethling
, and
J. J.
Cilliers
, “
The effect of particle hydrophobicity, separation distance and packing patterns on the stability of a thin film
,”
J. Colloid Interface Sci.
327
,
138
(
2008
).
29.
J.
Eggers
,
J. R.
Lister
, and
H. A.
Stone
, “
Coalescence of liquid drops
,”
J. Fluid Mech.
401
,
293
(
1999
).
30.
E. J.
Stancik
,
M.
Kouhkan
, and
G. G.
Fuller
, “
Coalescence of particle-laden fluid interfaces
,”
Langmuir
20
,
90
(
2004
).
31.
S.
Ata
, “
Coalescence of bubbles covered by particles
,”
Langmuir
24
,
6085
(
2008
).
32.
S.
Ata
, “
The detachment of particles from coalescing bubble pairs
,”
J. Colloid Interface Sci.
338
,
558
(
2009
).
33.
S. A.
Kulkarni
,
S. B.
Ogale
, and
K. P.
Vijayamohanan
, “
Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers
,”
J. Colloid Interface Sci.
318
,
372
(
2008
).
34.
E.
Bormashenko
,
R.
Pogreb
,
G.
Whyman
, and
A.
Musin
, “
Surface tension of liquid marbles
,”
Colloids Surf., A
351
,
78
(
2009
).
35.
C.
Planchette
,
E.
Lorenceau
, and
A. L.
Biance
, “
Surface wave on a particle raft
,”
Soft Matter
8
,
2444
(
2012
).
36.
Y.
Renardy
,
S.
Popinet
,
L.
Duchemin
,
M.
Renardy
,
S.
Zaleski
,
C.
Josserand
,
M. A.
Drumright-Clarke
,
D.
Richard
,
C.
Clanet
, and
D.
Quéré
, “
Pyramidal and toroidal water drops after impact on a solid surface
,”
J. Fluid Mech.
484
,
69
(
2003
).
37.
C.
Planchette
,
A. L.
Biance
, and
E.
Lorenceau
, “
Transition of liquid marble impacts onto solid surfaces
,”
Europhys. Lett.
97
,
14003
(
2012
).
38.
H. M.
Princen
, “
Shape of a fluid drop at a liquid-liquid interface
,”
J. Colloid Sci.
18
,
178
(
1963
).
39.
F.
Bashforth
and
J. C.
Adams
,
An Attempt to Test the Theories of Capillary Action
(
University Press
,
Cambridge
,
1883
).
40.
C.
Clanet
,
C.
Beguin
,
D.
Richard
, and
D.
Quere
, “
Maximal deformation of an impacting drop
,”
J. Fluid Mech.
517
,
199
(
2004
).
41.
D.
Vella
,
P.
Aussillous
, and
L.
Mahadevan
, “
Elasticity of an interfacial particle raft
,”
Europhys. Lett.
68
,
212
(
2004
).
42.
A. L.
Biance
,
F.
Chevy
,
C.
Clanet
,
G.
Lagubeau
, and
D.
Quere
, “
On the elasticity of an inertial liquid shock
,”
J. Fluid Mech.
554
,
47
(
2006
).
43.
M. M.
Bandi
,
T.
Tallinen
, and
L.
Mahadevan
, “
Shock-driven jamming and periodic fracture of particulate rafts
,”
EPL
96
,
36008
(
2011
).
44.
D.
Vella
,
H. Y.
Kim
,
P.
Aussillous
, and
L.
Mahadevan
, “
Dynamics of surfactant-driven fracture of particle rafts
,”
Phys. Rev. Lett.
96
,
178301
(
2006
).
45.
N. P.
Ashby
,
B. P.
Binks
, and
V. N.
Paunov
, “
Bridging interaction between a water drop stabilised by solid particles and a planar oil/water interface
,”
Chem. Commun.
2004
,
436
.
46.
E. J.
Stancik
and
G. G.
Fuller
, “
Connect the drops: Using solids as adhesives for liquids
,”
Langmuir
20
,
4805
(
2004
).
47.
T. S.
Horozov
and
B. P.
Binks
, “
Particle-stabilized emulsions: A bilayer or a bridging monolayer?
,”
Angew. Chem., Int. Ed. Engl.
45
,
773
(
2006
).
48.
H.
Xu
,
M.
Lask
,
J.
Kirkwood
, and
G.
Fuller
, “
Particle bridging between oil and water interfaces
,”
Langmuir
23
,
4837
(
2007
).
You do not currently have access to this content.