We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

1.
A. M.
Worthington
and
R. S.
Cole
, “
Impact with a liquid surface studied by the aid of instantaneous photography. Paper II
,”
Philos. Trans. R. Soc. London, Ser. A
194
,
175
199
(
1900
).
2.
R.
Bergmann
,
D.
van der Meer
,
M.
Stijnman
,
M.
Sandtke
,
A.
Prosperetti
, and
D.
Lohse
, “
Giant bubble pinch-off
,”
Phys. Rev. Lett.
96
,
154505
(
2006
).
3.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
, “
Making a splash with water repellency
,”
Nat. Phys.
3
,
180
183
(
2007
).
4.
S.
Gekle
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
High-speed jet formation after solid object impact
,”
Phys. Rev. Lett.
102
,
034502
(
2009
).
5.
J. M.
Gordillo
, “
Axisymmetric bubble pinch-off at high Reynolds numbers
,”
Phys. Rev. Lett.
95
,
194501
(
2005
).
6.
J. M.
Gordillo
and
M.
Pérez-Saborid
, “
Axisymmetric breakup of bubbles at high Reynolds numbers
,”
J. Fluid Mech.
562
,
303
(
2006
).
7.
S.
Gekle
,
I. R.
Peters
,
J. M.
Gordillo
,
D.
van der Meer
, and
D.
Lohse
, “
Supersonic air flow due to solid-liquid impact
,”
Phys. Rev. Lett.
104
,
024501
(
2010
).
8.
S.
Gekle
and
J. M.
Gordillo
, “
Compressible air flow through a collapsing liquid cavity
,”
Int. J. Numer. Meth. Fluids
67
,
1456
(
2011
).
9.
P.
Doshi
,
I.
Cohen
,
W. W.
Zhang
,
M.
Siegel
,
P.
Howell
,
O. A.
Basaran
, and
S. R.
Nagel
, “
Persistence of memory in drop breakup: The breakdown of universality
,”
Science
302
,
1185
1188
(
2003
).
10.
N. C.
Keim
,
P.
Møller
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Breakup of air bubbles in water: Memory and breakdown of cylindrical symmetry
,”
Phys. Rev. Lett.
97
,
144503
(
2006
).
11.
L. E.
Schmidt
,
N. C.
Keim
,
W. W.
Zhang
, and
S. R.
Nagel
, “
Memory-encoding vibrations in a disconnecting air bubble
,”
Nat. Phys.
5
,
343
346
(
2009
).
12.
K. S.
Turitsyn
,
L.
Lai
, and
W. W.
Zhang
, “
Asymmetric disconnection of an underwater air bubble: Persistent neck vibrations evolve into a smooth contact
,”
Phys. Rev. Lett.
103
,
124501
(
2009
).
13.
O. R.
Enríquez
,
I. R.
Peters
,
S.
Gekle
,
L. E.
Schmidt
,
M.
Versluis
,
D.
van der Meer
, and
D.
Lohse
, “
Collapse of nonaxisymmetric cavities
,”
Phys. Fluids
22
,
091104
(
2010
).
14.
O. R.
Enríquez
,
I. R.
Peters
,
S.
Gekle
,
L. E.
Schmidt
,
D.
van der Meer
, and
D.
Lohse
, “
Non-axisymmetric impact creates pineapple-shaped cavity
,”
Phys. Fluids
23
,
091106
(
2011
).
15.
O. R.
Enríquez
,
I. R.
Peters
,
S.
Gekle
,
L. E.
Schmidt
,
D.
Lohse
, and
D.
van der Meer
, “
Collapse and pinch-off of a non-axisymmetric impact-created air cavity in water
,”
J. Fluid Mech.
701
,
40
58
(
2012
).
16.
M.
Minnaert
, “
On musical air-bubbles and the sounds of running water
,”
Philos. Mag.
16
,
235
248
(
1933
).
17.
The Minnaert frequency is given by
$f = \protect \frac{1}{2\pi r}(\protect \frac{3\gamma p_A}{\rho }) = (3.26\, \protect \mathrm{m/s})/r$
f=12πr(3γpAρ)=(3.26m/s)/r
, where r is the bubble radius, γ the polytropic exponent, pA the atmospheric pressure, and ρ the density of water. We calculated the equivalent radius of a spherical bubble corresponding to the bubble volume at pinch-off, which equals
$5.49\times 10^{-5} \protect \text{\,m}^3$
5.49×105m3
.
18.
T.
Grumstrup
,
J. B.
Keller
, and
A.
Belmonte
, “
Cavity ripples observed during the impact of solid objects into liquids
,”
Phys. Rev. Lett.
99
,
114502
(
2007
).
19.
R.
Bergmann
,
D.
van der Meer
,
S.
Gekle
,
A.
van der Bos
, and
D.
Lohse
, “
Controlled impact of a disk on a water surface: Cavity dynamics
,”
J. Fluid Mech.
633
,
381
409
(
2009
).
20.
The simulations in Fig. 4 are two-phase boundary integral simulations, where close to pinch off the compressibility of the gas is taken into account using the one-dimensional compressible Euler equations (briefly discussed in Sec. V as type (iii) simulations). More details about these simulations can be found in Refs. 7 and 8.
21.
P.
Tokumaru
and
P.
Dimotakis
, “
Image correlation velocimetry
,”
Exp. Fluids
19
,
1
15
(
1995
).
22.
M.
Honkanen
and
H.
Nobach
, “
Background extraction from double-frame PIV images
,”
Exp. Fluids
38
,
348
362
(
2005
).
23.
J.
Eggers
,
M. A.
Fontelos
,
D.
Leppinen
, and
J. H.
Snoeijer
, “
Theory of the collapsing axisymmetric cavity
,”
Phys. Rev. Lett.
98
,
094502
(
2007
).
24.
S.
Gekle
,
J. H.
Snoeijer
,
D.
Lohse
, and
D.
van der Meer
, “
Approach to universality in axisymmetric bubble pinch-off
,”
Phys. Rev. E
80
,
036305
(
2009
).
25.
Averaged over the cross-sectional area of the cavity at that depth.
26.
Although strictly speaking RM(z) is a function of z, it is slowly varying and can approximated by a constant when the logarithm of this quantity is taken.
27.
The constant β is different in the expansion βexpa and the contraction phase βctra.
28.
The nomenclature of the constants is chosen such as to be consistent with Ref. 19.
29.
The constant C2 is not independent of the α’s and β’s: C2 = 2(αexpaβexpa + αctraβctra)1/2.
30.
J.
Westerweel
, “
Digital particle image velocimetry—Theory and application
,” Ph.D. dissertation (
Delft University of Technology
,
1993
).
You do not currently have access to this content.