In the framework of linear stability theory, we analyze how a liquid-gas mixing layer is affected by several parameters: viscosity ratio, density ratio, and several length scales. These scales reflect the presence of a velocity defect induced by the wake behind the splitter plate and the presence of boundary layers which develop ahead of the plate trailing edge. Incorporating such effects, we compute the various temporal and spatial instability modes and identify their driving instability mechanism based on their Reynolds number dependence, spatial structure, and energy budget. It is examined how the velocity defect modifies the temporal and the spatial stability properties. In addition, the transition from convective to absolute instability occurs at lower velocity contrast between gas and liquid free streams when a defect is present. This transition is also promoted by surface tension. Compared to inviscid stability computations, our spatial stability analysis displays a better agreement with measured growth rates obtained in two recent air-water experiments.

1.
A.
Lefebvre
,
Atomization and Sprays
(
Taylor & Francis
,
Bristol, PA
,
1989
).
2.
L.
Bayvel
and
Z.
Orzechowski
,
Liquid Atomization
(
Taylor & Francis
,
Washington, DC
,
1993
).
3.
S.
Lin
and
R.
Reitz
, “
Drop and spray formation from a liquid jet
,”
Annu. Rev. Fluid Mech.
30
,
85
105
(
1998
).
4.
M.
Juniper
and
S.
Candel
, “
The stability of ducted compound flows and consequences for the geometry of coaxial injectors
,”
J. Fluid Mech.
482
,
257
269
(
2003
).
5.
J.
Lasheras
and
E.
Hopfinger
, “
Liquid jet instability and atomization in a coaxial gas stream
,”
Annu. Rev. Fluid Mech.
32
,
275
308
(
2000
).
6.
P.
Marmottant
and
E.
Villermaux
, “
On spray formation
,”
J. Fluid Mech.
498
,
73
111
(
2004
).
7.
M.
Gorokhovski
and
M.
Herrmann
, “
Modeling primary atomization
,”
Annu. Rev. Fluid Mech.
40
,
343
366
(
2008
).
8.
W.
Tauber
,
S.
Unverdi
, and
G.
Tryggvason
, “
The nonlinear behavior of a sheared immiscible fluid interface
,”
Phys. Fluids
14
,
2871
(
2002
).
9.
T.
Menard
,
S.
Tanguy
, and
A.
Berlemont
, “
Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet
,”
Int. J. Multiphase Flow
33
,
510
524
(
2007
).
10.
T.
Boeck
,
J.
Li
,
E.
López-Pagés
,
P.
Yecko
, and
S.
Zaleski
, “
Ligament formation in sheared liquid–gas layers
,”
Theor. Comput. Fluid Dyn.
21
,
59
76
(
2007
).
11.
D.
Fuster
,
A.
Bagué
,
T.
Boeck
,
L.
Le Moyne
,
A.
Leboissetier
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Simulation of primary atomization with an octree adaptive mesh refinement and VOF method
,”
Int. J. Multiphase Flow
35
,
550
565
(
2009
).
12.
G.
Tomar
,
D.
Fuster
,
S.
Zaleski
, and
S.
Popinet
, “
Multiscale simulations of primary atomization
,”
Comput. Fluids
39
,
1864
1874
(
2010
).
13.
A.
Bagué
,
D.
Fuster
,
S.
Popinet
,
R.
Scardovelli
, and
S.
Zaleski
, “
Instability growth rate of two-phase mixing layers from a linear eigenvalue problem and an initial-value problem
,”
Phys. Fluids
22
,
092104
(
2010
).
14.
M.
Herrmann
, “
A parallel Eulerian interface tracking/Lagrangian point particle multi-scale coupling procedure
,”
J. Comput. Phys.
229
,
745
759
(
2010
).
15.
L. C.
Cheung
and
T. A.
Zaki
, “
Linear and nonlinear instability waves in spatially developing two-phase mixing layers
,”
Phys. Fluids
22
,
052103
(
2010
).
16.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge
,
1981
).
17.
C.
Yih
, “
Instability due to viscosity stratification
,”
J. Fluid Mech.
27
,
337
352
(
1967
).
18.
Y.
Renardy
, “
Instability at the interface between two shearing fluids in a channel
,”
Phys. Fluids
28
,
3441
(
1985
).
19.
A.
Hooper
and
W.
Boyd
, “
Shear-flow instability at the interface between two viscous fluids
,”
J. Fluid Mech.
128
,
507
528
(
1983
).
20.
E.
Hinch
, “
A note on the mechanism of the instability at the interface between two shearing fluids
,”
J. Fluid Mech.
144
,
463
465
(
1984
).
21.
S.
Özgen
,
G.
Degrez
, and
G.
Sarma
, “
Two-fluid boundary layer stability
,”
Phys. Fluids
10
,
2746
(
1998
).
22.
W.
Criminale
,
T. L.
Jackson
, and
R. D.
Joslin
,
Theory and Computation of Hydrodynamic Stability
(
Cambridge University Press
,
Cambridge
,
2003
).
23.
P.
Huerre
and
P.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
24.
P.
Huerre
and
M.
Rossi
, “
Hydrodynamic instabilities in open flows
,” in
Hydrodynamics and Nonlinear Instabilities
, edited by
C.
Godrèche
and
P.
Manneville
(
Cambridge University Press
,
Cambridge
,
1998
).
25.
J.
Healey
, “
Enhancing the absolute instability of a boundary layer by adding a far-away plate
,”
J. Fluid Mech.
579
,
29
(
2007
).
26.
M.
Juniper
, “
The full impulse response of two-dimensional jet/wake flows and implications for confinement
,”
J. Fluid Mech.
590
,
163
185
(
2007
).
27.
A.
Sevilla
,
J.
Gordillo
, and
C.
Martinez-Bazan
, “
The effect of the diameter ratio on the absolute and convective instability of free coflowing jets
,”
Phys. Fluids
14
,
3028
(
2002
).
28.
J.
Gordillo
and
M.
Perez-Saborid
, “
Aerodynamic effects in the break-up of liquid jets: On the first wind-induced break-up regime
,”
J. Fluid Mech.
541
,
1
20
(
2005
).
29.
S.
Lin
and
J.
Chen
, “
Role played by the interfacial shear in the instability mechanism of a viscous liquid jet surrounded by a viscous gas in a pipe
,”
J. Fluid Mech.
376
,
37
51
(
1998
).
30.
A.
Lozano
,
F.
Barreras
,
G.
Hauke
, and
C.
Dopazo
, “
Longitudinal instabilities in an air-blasted liquid sheet
,”
J. Fluid Mech.
437
,
143
173
(
2001
).
31.
J.
Gordillo
,
M.
Pérez-Saborid
, and
A.
Gañán-Calvo
, “
Linear stability of co-flowing liquid-gas jets
,”
J. Fluid Mech.
448
,
23
51
(
2001
).
32.
L.
Söderberg
, “
Absolute and convective instability of a relaxational plane liquid jet
,”
J. Fluid Mech.
493
,
89
119
(
2003
).
33.
A.
Sevilla
,
J.
Gordillo
, and
C.
Martínez-Bazán
, “
Transition from bubbling to jetting in a coaxial air–water jet
,”
Phys. Fluids
17
,
018105
(
2005
).
34.
M.
Juniper
, “
The effect of confinement on the stability of two-dimensional shear flows
,”
J. Fluid Mech.
565
,
171
196
(
2006
).
35.
M. A.
Herrada
,
C.
Ferrera
,
J. M.
Montanero
, and
A. M.
Gañán-Calvo
, “
Absolute lateral instability in capillary coflowing jets
,”
Phys. Fluids
22
,
064104
(
2010
).
36.
O.
Tammisola
,
A.
Sasaki
,
F.
Lundell
,
M.
Matsubara
, and
L.
Söderberg
, “
Stabilizing effect of surrounding gas flow on a plane liquid sheet
,”
J. Fluid Mech.
672
,
5
32
(
2011
).
37.
K. C.
Sahu
,
H.
Ding
,
P.
Valluri
, and
O. K.
Matar
, “
Linear stability analysis and numerical simulation of miscible two-layer channel flow
,”
Phys. Fluids
21
,
042104
(
2009
).
38.
P.
Valluri
,
L. O.
Naraigh
,
H.
Ding
, and
P. D. M.
Spelt
, “
Linear and nonlinear spatio-temporal instability in laminar two-layer flows
,”
J. Fluid Mech.
656
,
458
480
(
2010
).
39.
P.
Yecko
,
S.
Zaleski
, and
J.
Fullana
, “
Viscous modes in two-phase mixing layers
,”
Phys. Fluids
14
,
4115
(
2002
).
40.
T.
Boeck
and
S.
Zaleski
, “
Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile
,”
Phys. Fluids
17
,
032106
(
2005
).
41.
T.
Boeck
and
S.
Zaleski
, “
Instability of two-phase mixing layers: analysis of exact and approximate base flows from boundary layer theory
,”
J. Non-Equilib. Thermodyn.
30
,
215
224
(
2005
).
42.
E.
Villermaux
, “
Mixing and spray formation in coaxial jets
,”
J. Propul. Power
14
,
807
817
(
1998
).
43.
J.
Matas
,
S.
Marty
, and
A.
Cartellier
, “
Experimental and analytical study of the shear instability of a gas-liquid mixing layer
,”
Phys. Fluids
23
,
094112
(
2011
).
44.
M.
Koochesfahani
and
C.
Frieler
, “
Instability of nonuniform density free shear layers with a wake profile
,”
AIAA J.
27
,
1735
1740
(
1989
).
45.
P. A.
Monkewitz
, “
The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers
,”
Phys. Fluids
31
,
999
(
1988
).
46.
P. A.
Monkewitz
and
L. N.
Nguyen
, “
Absolute instability in the near wake of two-dimensional bluff bodies
,”
J. Fluids Struct.
1
,
165
184
(
1987
).
47.
J.
Dongarra
,
B.
Straughan
, and
D.
Walker
, “
Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems
,”
Appl. Numer. Math.
22
,
399
434
(
1996
).
48.
P.
Boomkamp
and
R.
Miesen
, “
Classification of instabilities in parallel two-phase flow
,”
Int. J. Multiphase Flow
22
,
67
88
(
1996
).
49.
J.
Healey
, “
A new convective instability of the rotating-disk boundary layer with growth normal to the disk
,”
J. Fluid Mech.
560
,
279
310
(
2006
).
50.
J.
Healey
, “
Destabilizing effects of confinement on homogeneous mixing layers
,”
J. Fluid Mech.
623
,
241
271
(
2009
).
51.
M.
Gaster
, “
A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability
,”
J. Fluid Mech.
14
,
222
224
(
1962
).
52.
A.
Bers
, “
Space-time evolution of plasma instabilities - absolute and convective
,” in
Basic Plasma Physics: Selected Chapters, Handbook of Plasma Physics
, edited by
A. A.
Galeev
and
R. N.
Sudan
(
North-Holland
,
Amsterdam
,
1983
), Vol.
1
, pp.
451
517
.
53.
S.
Rees
and
M.
Juniper
, “
The effect of surface tension on the stability of unconfined and confined planar jets and wakes
,”
J. Fluid Mech.
633
,
71
97
(
2009
).
54.
P.
Huerre
and
P.
Monkewitz
, “
Absolute and convective instabilities in free shear layers
,”
J. Fluid Mech.
159
,
151
168
(
1985
).
55.
A.
Smits
,
A Physical Introduction To Fluid Mechanics
(
Wiley
,
New York
,
2000
).
You do not currently have access to this content.