There is a widespread agreement that more effective drug delivery vehicles with more alternatives, as well as better active pharmaceutical ingredients (APIs), must be developed to improve the efficacy of microbicide products. For instance, in tropical regions, films are more appropriate than gels due to better stability of drugs at extremes of moisture and temperature. Here, we apply fundamental fluid mechanical and physicochemical transport theory to help better understand how successful microbicide API delivery depends upon properties of a film and the human reproductive tract environment. Several critical components of successful drug delivery are addressed. Among these are: elastohydrodynamic flow of a dissolved non-Newtonian film; mass transfer due to inhomogeneous dilution of the film by vaginal fluid contacting it along a moving boundary (the locally deforming vaginal epithelial surface); and drug absorption by the epithelium. Local rheological properties of the film are dependent on local volume fraction of the vaginal fluid. We evaluated this experimentally, delineating the way that constitutive parameters of a shear-thinning dissolved film are modified by dilution. To develop the mathematical model, we integrate the Reynolds lubrication equation with a mass conservation equation to model diluting fluid movement across the moving vaginal epithelial surface and into the film. This is a complex physicochemical phenomenon that is not well understood. We explore time- and space-varying boundary flux model based upon osmotic gradients. Results show that the model produces fluxes that are comparable to experimental data. Further experimental characterization of the vaginal wall is required for a more precise set of parameters and a more sophisticated theoretical treatment of epithelium.

1.
S. L.
Kieweg
,
A. R.
Geonnotti
, and
D. F.
Katz
, “
Gravity-induced coating flows of vaginal gel formulations: In vitro experimental analysis
,”
J. Pharm. Sci.
93
,
2941
(
2004
).
2.
S. L.
Kieweg
and
D. F.
Katz
, “
Squeezing flows of vaginal gel formulations relevant to microbicide drug delivery
,”
J. Biomech. Eng.
128
,
540
(
2006
).
3.
S. L.
Kieweg
and
D. F.
Katz
, “
Interpreting properties of microbicide drug delivery gels: Analyzing deployment due to squeezing
,”
J. Pharm. Sci.
96
,
835
(
2007
).
4.
A. J.
Szeri
,
S. C.
Park
,
S.
Verguet
,
A.
Weiss
, and
D. F.
Katz
, “
A model of transluminal flow of an anti-HIV microbicide vehicle: Combined elasticsqueezing and gravitational sliding
,”
Phys. Fluids
20
,
083101
(
2008
).
5.
S.
Tasoglu
,
S. C.
Park
,
J. J.
Peters
,
D. F.
Katz
, and
A. J.
Szeri
, “
The consequences of yield stress on deployment of a non-Newtonian anti-HIV microbicide gel
,”
J. Non-Newtonian Fluid Mech.
166
(
19–20
)
1116
22
(
2011
).
6.
S.
Tasoglu
,
J. J.
Peters
,
S. C.
Park
,
S.
Verguet
,
D. F.
Katz
, and
A. J.
Szeri
, “
The effects of inhomogeneous boundary dilution on the coating flow of an anti-HIV microbicide vehicle
,”
Phys. Fluids.
23
,
093101
(
2011
).
7.
S.
Tasoglu
,
D. F.
Katz
, and
A. J.
Szeri
, “
Transient spreading and swelling behavior of a gel deploying an anti-HIV topical microbicide
,”
J. Non-Newtonian Fluid Mechanics
187–188
,
36
42
(
2011
).
8.
C.
Coggins
,
C. J.
Elias
,
R.
Atisook
,
M. T.
Bassett
,
V.
Ettiegnene-Traore
,
P. D.
Ghys
,
L.
Jenkins-Woelk
,
E.
Thongkrajai
, and
N. L.
VanDevanter
, “
Women's preferences regarding the formulation of over-the-counter vaginal spermicides
,”
AIDS
12
,
1389
91
(
1998
).
9.
S.
Garg
,
K.
Vermani
,
A.
Garg
,
R. A.
Anderson
,
W. B.
Rencher
, and
L. J. D.
Zaneveld
, “
Development and characterization of bioadhesive vaginal films of sodium polystyrene sulfonate (PSS), a novel contraceptive antimicrobial agent
,”
Pharm. Res.
22
,
584
595
(
2005
).
10.
S.
Roy
,
Barrier Contraceptives: Current Status and Future Prospects
(
Wiley
,
New York
,
1994
).
11.
D. J.
Coyle
, “
Forward roll coating with deformable rolls: A simple one-dimensional elastohydrodynamic model
,”
Chem. Eng. Sci.
43
,
2673
(
1988
).
12.
J. M.
Skotheim
and
L.
Mahadevan
, “
Soft lubrication
,”
Phys. Rev. Lett.
92
,
245509
(
2004
).
13.
A.
Steinberger
,
C.
Cottin-Bizonne
,
P.
Kleimann
, and
E.
Charlaix
, “
Nanoscale flow on bubble mattress: Effect of surface elasticity
,”
Phys. Rev. Lett.
100
,
134501
(
2008
).
14.
J.
Chakraborty
and
S.
Chakraborty
, “
Combined influence of streaming potential and substrate compliance on load capacity of a planar slider bearing
,”
Phys. Fluids
23
,
082004
(
2011
).
15.
D. H.
Owen
and
D. F.
Katz
, “
A vaginal fluid stimulant
,”
Contraception
59
,
91
95
(
1999
).
16.
W. H.
Masters
and
V. E.
Johnson
,
Human Sexual Response
(
Little
,
Brown, Boston
1966
).
17.
Q. A.
Abdool Karim
 et al “
Effectiveness and safety of Tenofovir del, an antiretroviral microbicide, for the prevention of HIV infection in women
,”
Science
329
,
1168
1174
(
2010
).
18.
A. R.
Geonnotti
,
M. J.
Furlow
,
T.
Wu
,
M. G.
DeSoto
,
M. H.
Henderson
,
P. F.
Kiser
, and
D. F.
Katz
, “
Measuring macrodiffusion coefficients in microbicide hydrogels via postphotoactivation scanning
,”
Biomacromolecules
9
,
748
51
(
2008
).
19.
K.
Podual
,
F.
Doyle
 III
, and
N. A.
Peppas
, “
Modeling of water transport in and release from glucose-sensitive swelling-controlled release systems based on poly (diethylaminoethyl methacrylate-g-ethylene glycol)
,”
Ind. Eng. Chem. Res.
43
,
7500
(
2004
).
20.
B. E.
Lai
,
Y. Q.
Xie
,
M.
Lavine
,
A. J.
Szeri
,
D. H.
Owen
, and
D. F.
Katz
, “
Dilution of microbicide gels with vaginal fluid and semen simulants: Effects on rheology and coating flow
,”
J. Pharm. Sci.
97
,
1030
(
2008
).
21.
J. M.
Diamond
and
W. H.
Bossert
, “
Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia
,”
J. Gen. Physiol.
50
(
8
),
2061
83
(
1967
).
22.
L.
Langbein
,
C.
Grund
,
C.
Kuhn
,
S.
Praetzel
,
J.
Kartenbeck
,
J. M.
Brandner
,
I.
Moll
, and
W. W.
Franke
, “
Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom
,”
European J. Cell Biol.
81
(
8
),
419
35
(
2002
).
23.
J.
Fischbarg
and
F. P. J.
Diecke
, “
A mathematical model of electrolyte and fluid transport across corneal endothelium
,”
J. Membr. Biol.
203
,
41
56
(
2005
).
24.
M.
Rowland
and
T. N.
Tozer
,
Clinical Pharmacokinetics: Concepts and Applications
, 3rd ed. (
Williams and Wilkins
,
Media, PA
,
1995
).
25.
H. H.
Usansky
and
P. J.
Sinko
, “
Estimating human drug oral absorption kinetics from caco-2 permeability using an absorption-disposition model: Model development and evaluation and derivation of analytical solutions for ka and Fa
,”
J. Pharmacol. Exp. Ther.
314
,
391
399
(
2005
).
26.
M.
Hackemann
,
C.
Grubb
, and
K. R.
Hill
, “
The ultrastructure of normal squamous epithelium of the human cervix uteri
,”
J. Ultrastruct. Res.
22
,
443
457
(
1968
).
27.
A.
Rubashkin
,
P.
Iserovich
,
J. A.
Hernandez
, and
J.
Fischbarg
, “
Epithelial fluid transport: Protruding macromolecules and space charges can bring about electro-osmotic coupling at the tight junctions
,”
J. Membr. Biol.
208
,
251
263
(
2005
).
28.
M. G.
Farquhar
and
G. E.
Palade
, “
Junctional complexes in various epithelia
,”
J. Cell. Biol.
17
,
375
412
(
1963
).
29.
S.
Tasoglu
, “
Transport phenomena and pharmacokinetics of anti-HIV microbicide drug delivery
,” Ph.D. dissertation,
University of California
, Berkeley,
2011
.
30.
S.
Tasoglu
,
A. J.
Szeri
, and
D. F.
Katz
, “
Transport processes in vaginal films that release anti-HIV microbicide molecules
,”
Biophys. J.
100
(
3
),
489a
(
2011
).
31.
A. J.
Szeri
,
S. C.
Park
,
S.
Tasoglu
,
S.
Verguet
,
A.
Gorham
,
Y.
Gao
, and
D. F.
Katz
, “
Epithelial coating mechanisms by semi-solid materials: Application to microbicide gels
,”
Biophys. J.
98
(
3
),
604a
604a
(
2010
).
You do not currently have access to this content.