We present experimental results of film drainage on top of gas bubbles pushed by gravity towards the free surface of highly viscous Newtonian liquid with a uniform interface tension. The temporal evolution of the thickness of the film between a single bubble and the air/liquid interface is investigated via interference method. Experiments under various physical conditions (range of viscosities and surface tension of the liquid, and bubble sizes) evidence the influence of the deformation of the thin film on the thinning rate and confirm the slow down of film drainage with Bond number as previously reported by numerical work of Pigeonneau and Sellier [Phys. Fluids23, 092102 (2011)] https://doi.org/10.1063/1.3629815. Considering the liquid flow in the cap squeezed by buoyancy force of the bubble, we provide an approximation of thinning rate as a function of Bond number that agrees with experimental and numerical data. Qualitatively, the smaller the area of the thin film compare to the surface of the bubble, the faster the drainage.

1.
D.
Weaire
and
S.
Hutzler
,
The Physics of Foams
(
Clarendon
,
Oxford
,
1999
).
2.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
O.
Pitois
,
F.
Rouyer
, and
A.
Saint-Jalmes
,
Les Mousses. Structure et Dynamique
(
Belin
,
Paris
,
2010
).
3.
J.
Kappel
,
R.
Conradt
, and
H.
Scholze
, “
Foaming behaviour on glass melts
,”
Glastech. Ber.
60
,
189
201
(
1987
), http://cat.inist.fr/?aModele=afficheN&cpsidt=7820577.
4.
J.
van der Schaaf
and
R. G. C.
Beerkens
, “
A model for foam formation, stability, and breakdown in glass-melting furnaces
,”
J. Colloid Interface Sci.
295
,
218
229
(
2006
).
5.
Both, glass and lava are silicates.
6.
A. A.
Proussevitch
,
D. L.
Sahagian
, and
V. A.
Kutolin
, “
Stability of foams in silicate melts
,”
J. Volcanol. Geotherm. Res.
59
,
161
178
(
1993
).
7.
K.
Mysels
,
K.
Shinoda
, and
S.
Frankel
,
Soap Film: Studies of Their Thinning
(
Pergamon
,
New York
,
1959
).
8.
L. W.
Schwartz
and
R. V.
Roy
, “
Modeling draining flow in mobile and immobile soap films
,”
J. Colloid Interface Sci.
218
,
309
323
(
1999
).
9.
S.
Hartland
, “
The coalescence of a liquid drop at a liquid-liquid interface. Part I: Drop shape
,”
Trans. Instn. Chem. Eng.
45
,
T97
T101
(
1967
).
10.
S.
Hartland
, “
The coalescence of a liquid drop at a liquid-liquid interface. Part II: Film thickness
,”
Trans. Instn. Chem. Eng.
45
,
T102
T108
(
1967
).
11.
S.
Hartland
, “
The coalescence of a liquid drop at a liquid-liquid interface. Part III: Film rupture
,”
Trans. Instn. Chem. Eng.
45
,
T109
T114
(
1967
).
12.
G.
Debrégeas
,
P.-G.
de Gennes
, and
F.
Brochard-Wyart
, “
The life and death of “bare” viscous bubbles
,”
Science
279
,
1704
1707
(
1998
).
13.
J.
Senée
,
B.
Robillard
, and
M.
Vignes-Adler
, “
Films and foams of Champagne wines
,”
Food Hydrocolloids
13
,
15
26
(
1999
).
14.
S. G.
Yiantsios
and
R. H.
Davis
, “
On the buoyancy-driven motion of a drop towars a rigid surface or a deformable interface
,”
J. Fluid Mech.
217
,
547
573
(
1990
).
15.
G.
Oldenziel
,
R.
Delfos
, and
J.
Westerweel
, “
Measurements of liquid film thickness for a droplet at a two-fluid interface
,”
Phys. Fluids
24
,
022106
(
2012
).
16.
K.
Kumar
,
A. D.
Nikolov
, and
D. T.
Wasan
, “
Effect of film curvature on drainage of thin liquid films
,”
J. Colloid Interface Sci.
256
,
194
200
(
2002
).
17.
F.
Pigeonneau
and
A.
Sellier
, “
Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface
,”
Phys. Fluids
23
,
092102
(
2011
).
18.
D. Y. C.
Chan
,
E.
Klaseboer
, and
R.
Manica
, “
Film drainage and coalescence between deformable drops and bubbles
,”
Soft Matter
7
,
2235
2264
(
2011
).
19.
G. I.
Barenblatt
,
Scaling
(
Cambridge University Press
,
Cambridge
,
2003
).
20.
P. D.
Howell
, “
The draining of a two-dimensional bubble
,”
J. Eng. Math.
35
,
251
272
(
1999
).
21.
C. J. S.
Petrie
, “
Extensional viscosity: A critical discussion
,”
J. Non-Newtonian Fluid Mech.
137
,
15
23
(
2006
).
22.
P. D.
Howell
, “
Models for thin viscous sheets
,”
Eur. J. Appl. Math.
7
,
321
346
(
1996
).
23.
C.
Isenberg
,
The Science of Soap Films and Soap Bubbles
(
Dover
,
New York
,
1992
).
24.
T.
Lakatos
,
L.-G.
Johansson
, and
B.
Simmingsköld
, “
Viscosity temperature relations in the glass system SiO2-Al2O3-Na2O-K2O-CaO-MgO in the composition range of technical glasses
,”
Glass Technol.
13
,
88
94
(
1972
).
25.
A.
Dietzel
, “
Zusammenänge zwischen Oberflächenspannung und Struktur von Glasschmelzen
,”
Kolloid Z.
100
,
368
380
(
1942
).
26.
K. C.
Lyon
, “
Calculation of surface tension of glasses
,”
J. Am. Ceram. Soc.
27
(
6
),
186
189
(
1944
).
27.
C.
Rubenstein
, “
Factors for the calculation of the surface tension of glasses at 1200 C
,”
Glass Technol.
5
,
36
40
(
1964
).
28.
A.
Kucuk
,
A. G.
Clare
, and
L.
Jones
, “
An Estimation of the surface tension for silicate glass melts at 1400°C using statistical analysis
,”
Glass Technol.
40
(
5
),
149
153
(
1999
).
29.
H.
Scholze
,
Glass. Nature, Structures and Properties
(
Springer-Verlag
,
Berlin
,
1990
).
30.
H. M.
Princen
, “
Shape of a fluid drop at a liquid-liquid interface
,”
J. Colloid Interface Sci.
18
,
178
195
(
1963
).
31.
H.
Kočárková
, “
Stabilité des mousses de verre: Expériences à l'échelle d'une bulle ou d'un film vertical
,” Ph.D. dissertation (
Université Paris-Est
, Marne la Vallée,
2011
) (in English).
32.
E.
Bart
, “
The slow unsteady settling of a fluid sphere toward a flat fluid interface
,”
Chem. Eng. Sci.
23
,
193
210
(
1968
).
33.
R. G.
Cox
and
H.
Brenner
, “
The slow motion of a sphere through a viscous fluid towards a plane surface – II Small gap widths, including inertial effects
,”
Chem. Eng. Sci.
22
,
1753
1777
(
1967
).
34.
S.
Kim
and
S. J.
Karrila
,
Microhydrodynamics. Principles and Selected Applications
(
Dover
,
New York
,
2005
).
35.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Gouttes, Bulles, Perles et Ondes
(
Belin
,
Paris
,
2005
).
You do not currently have access to this content.