Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

1.
J. J.
Allen
and
A. J.
Smits
, “
Energy harvesting eel
,”
J. Fluids Struct.
15
,
629
(
2001
).
2.
R.
Clark
and
A. J.
Smits
, “
Thrust production and wake structure of a batoid-inspired oscillating fin
,”
J. Fluid Mech.
562
,
415
(
2006
).
3.
J. C.
Nawroth
,
H.
Lee
,
A. W.
Feinberg
,
C. M.
Ripplinger
,
M. L.
McCain
,
A.
Grosberg
,
J. O.
Dabiri
, and
K. K.
Parker
, “
A tissue-engineered jellyfish with biomimetic propulsion
,”
Nat. Biotechnol.
30
,
792
(
2012
).
4.
R. W.
Whittlesey
,
S. C.
Liska
, and
J. O.
Dabiri
, “
Fish schooling as a basis for vertical-axis wind turbine farm design
,”
Bioinspiration Biomimetics
5
,
035005
(
2010
).
5.
J.
Birch
and
M.
Dickinson
, “
Spanwise flow and the attachment of the leading-edge vortex on insect wings
,”
Nature (London)
412
,
729
(
2001
).
6.
J. O.
Dabiri
, “
Optimal vortex formation as a unifying principle in biological propulsion
,”
Annu. Rev. Fluid Mech.
41
,
17
(
2009
).
7.
S. P.
Sane
, “
The aerodynamics of insect flight
,”
J. Exp. Biol.
206
,
4191
(
2003
).
8.
M. J.
Shelley
and
Z. J.
Zhang
, “
Flapping and bending bodies interacting with fluid flows
,”
Annu. Rev. Fluid Mech.
43
,
449
(
2011
).
9.
Z. J.
Wang
, “
Dissecting insect flight
,”
Annu. Rev. Fluid Mech.
37
,
183
(
2005
).
10.
T. Y.
Wu
, “
Fish swimming and bird/insect flight
,”
Annu. Rev. Fluid Mech.
43
,
25
(
2011
).
11.
T.
Hastie
,
R.
Tibshirani
, and
J.
Friedman
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(
Springer
,
2009
).
12.
R.
Duda
,
P.
Hart
, and
D.
Stork
,
Pattern Theory
(
Wiley
,
2001
).
13.
E. J.
Candes
,
J.
Romberg
, and
T.
Tao
, “
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
,”
IEEE Trans. Inf. Theory
52
(
2
),
489
509
(
2006
).
14.
E. J.
Candes
,
J. K.
Romberg
, and
T.
Tao
, “
Stable signal recovery from incomplete and inaccurate measurements
,”
Commun. Pure Appl. Math.
59
(
8
),
1207
1223
(
2006
).
15.
E. J.
Candes
and
T.
Tao
, “
Near-optimal signal recovery from random projections: Universal encoding strategies
?”
IEEE Trans. Inf. Theory
52
(
12
),
5406
5425
(
2006
).
16.
D. L.
Donoho
, “
Compressed sensing
,”
IEEE Trans. Inf. Theory
52
(
4
),
1289
1306
(
2006
).
17.
J.
Tropp
and
A.
Gilbert
, “
Signal recovery from random measurements via orthogonal matching pursuit
,”
IEEE Trans. Inf. Theory
53
,
4655
4666
(
2007
).
18.
R. G.
Baraniuk
,
V.
Cevher
,
M. F.
Duarte
, and
C.
Hegde
, “
Model-based compressive sensing
,”
IEEE Trans. Inf. Theory
56
(
4
),
1982
2001
(
2010
).
19.
R.
Baraniuk
, “
Compressive sensing
,”
IEEE Signal Processing Magazine (Lecture Notes)
24
(
4
),
118
124
(
2007
).
20.
H.
Nyquist
, “
Certain topics in telegraph transmission theory
,”
Trans. Am. Inst. Electr. Eng.
47
(
2
),
617
644
(
1928
).
21.
C. E.
Shannon
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
423
(
1948
).
22.
M.
Farge
,
K.
Schneider
, and
N.
Kevlahan
, “
Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis
,”
Phys. Fluids
11
,
2187
(
1999
).
23.
N.
Okamoto
,
K.
Yoshimatsu
,
K.
Schneider
,
M.
Farge
, and
Y.
Kaneda
, “
Coherent vortices in high resolution direct numerical simulation of homogeneous isotropic turbulence: A wavelet viewpoint
,”
Phys. Fluids
19
,
115109
(
2007
).
24.
H.
Schaeffer
,
S.
Osher
,
R.
Caflisch
, and
C.
Hauck
, “
Sparse dynamics of partial differential equations
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
6634
6639
(
2013
).
25.
R. R.
Coifman
and
M. V.
Wickerhauser
, “
Entropy-based algorithms for best basis selection
,”
IEEE Trans. Inf. Theory
38
(
2
),
713
718
(
1992
).
26.
T.
Wager
,
L.
Atlas
,
L.
Leotti
, and
J.
Rilling
, “
Predicting individual differences in placebo analgesia: Contributions of brain activity during anticipation and pain experience
,”
J. Neurosci.
31
,
439
452
(
2011
).
27.
D.
Giannakis
,
A.
Majda
, and
I.
Horenko
, “
Information theory, model error, and predictive skill of stochastic models for complex nonlinear systems
,”
Physica D
241
,
1735
(
2012
).
28.
A.
Agarwal
and
P. F. J.
Lermusiaux
, “
Statistical field estimation for complex coastal regions and archipelagos
,”
Ocean Model.
40
,
164
189
(
2011
).
29.
L. J.
Nelson
,
G. L.
Hart
,
F.
Zhou
, and
V.
Ozoliņš
, “
Compressive sensing as a paradigm for building physical models
,”
Phys. Rev. B
87
,
035125
(
2013
).
30.
A.
Shabani
,
R. L.
Kosut
,
M.
Mohseni
,
H.
Rabitz
,
M. A.
Broome
,
M. P.
Almeida
,
A.
Fedrizzi
, and
A. G.
White
, “
Efficient measurement of quantum dynamics via compressive sensing
,”
Phys. Rev. Lett.
106
,
100401
(
2011
).
31.
W. X.
Wang
,
R.
Yang
,
Y. C.
Lai
,
V.
Kovanis
, and
C.
Grebogi
, “
Predicting catastrophes in nonlinear dynamical systems by compressive sensing
,”
Phys. Rev. Lett.
106
,
154101
(
2011
).
32.
A. B.
Tayler
,
D. J.
Holland
,
A. J.
Sederman
, and
L. F.
Gladden
, “
Exploring the origins of turbulence in multiphase flow using compressed sensing MRI
,”
Phys. Rev. Lett.
108
,
264505
(
2012
).
33.
E.
Candes
,
X.
Li
,
Y.
Ma
, and
J.
Wright
, “
Robust principal component analysis
?”
J. ACM
58
(
11
),
1
37
(
2011
).
34.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
35.
M.
Van Dyke
,
An Album of Fluid Motion
(
Parabolic Press
,
1982
).
36.
G. E.
Karniadakis
, and
S. J.
Sherwin
, “
Spectral/hp element methods for computational fluid dynamics
,”
Numerical Mathematics and Scientific Computation
(
Oxford University Press
,
New York
,
2005
).
37.
A. E.
Deane
,
I. G.
Kevrekidis
,
G. E.
Karniadakis
, and
S. A.
Orszag
, “
Low- dimensional models for complex geometry flows: Application to grooved channels and circular cylinders
,”
Phys. Fluids A
3
(
10
),
2337
2354
(
1991
).
38.
X.
Ma
and
G. E.
Karniadakis
, “
A low-dimensional model for simulating three-dimensional cylinder flow
,”
J. Fluid Mech.
458
,
181
190
(
2002
).
39.
M.
Bergmann
,
L.
Cordier
, and
J. P.
Brancher
, “
Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model
,”
Phys. Fluids
17
(
9
),
097101
(
2005
).
40.
M.
Grant
and
S.
Boyd
, “
Graph implementations for nonsmooth convex programs
,” in
Recent Advances in Learning and Control
,
Lecture Notes in Control and Information Sciences
Vol.
371
, edited by
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
(
Springer-Verlag Limited
,
2008
), pp.
95
110
.
41.
K.
Cohen
,
S.
Siegel
, and
T.
McLaughlin
, “
Sensor placement based on proper orthogonal decomposition modeling of a cylinder wake
,” in
Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL, 23–26 June 2003
.
42.
B.
Yildirim
,
C.
Chryssostomidis
, and
G. E.
Karniadakis
, “
Efficient sensor placement for ocean measurements using low-dimensional concepts
,”
Ocean Model.
27
(
3
),
160
173
(
2009
).
You do not currently have access to this content.