A study of inertial gyroscopic waves in a rotating homogeneous fluid is undertaken both theoretically and numerically. A novel approach is presented to construct a semi-analytical solution of a linear three-dimensional fluid flow in a rotating rectangular parallelepiped bounded by solid walls. The three-dimensional solution is expanded in vertical modes to reduce the dynamics to the horizontal plane. On this horizontal plane, the two dimensional solution is constructed via superposition of “inertial” analogs of surface Poincaré and Kelvin waves reflecting from the walls. The infinite sum of inertial Poincaré waves has to cancel the normal flow of two inertial Kelvin waves near the boundaries. The wave system corresponding to every vertical mode results in an eigenvalue problem. Corresponding computations for rotationally modified surface gravity waves are in agreement with numerical values obtained by Taylor [“Tidal oscillations in gulfs and basins,” Proc. London Math. Soc., Ser. 2XX, 148181 (1921)], Rao [“Free gravitational oscillations in rotating rectangular basins,” J. Fluid Mech.25, 523555 (1966)] and also, for inertial waves, by Maas [“On the amphidromic structure of inertial waves in a rectangular parallelepiped,” Fluid Dyn. Res.33, 373401 (2003)] upon truncation of an infinite matrix. The present approach enhances the currently available, structurally concise modal solution introduced by Maas. In contrast to Maas' approach, our solution does not have any convergence issues in the interior and does not suffer from Gibbs phenomenon at the boundaries. Additionally, an alternative finite element method is used to contrast these two semi-analytical solutions with a purely numerical one. The main differences are discussed for a particular example and one eigenfrequency.

1.
G. I.
Taylor
, “
Tidal oscillations in gulfs and rectangular basins
,”
Proc. London Math. Soc.
20
,
148
181
(
1922
).
2.
Lord
Rayleigh
, “
Notes concerning tidal oscillations upon a rotating globe
,”
Proc. R. Soc. London
82
(
556
),
448
464
(
1909
), http://www.jstor.org/stable/92854.
3.
J.
Proudman
, “
On the dynamic equation of the tides. Parts 1–3
,”
Proc. London Math. Soc., Ser. 2
18
,
1
68
(
1917
).
4.
J.
Proudman
, “
Note on the free tidal oscillations of a sea with slow rotation
,”
Proc. London Math. Soc.
s2-35
,
75
82
(
1933
).
5.
P. H.
LeBlond
and
L. A.
Mysak
,
Waves in the Ocean
(
Elsevier
,
Amsterdam
,
1978
).
6.
L.
Kelvin
, “
Vibrations of a columnar vortex
,”
Philos. Mag.
10
,
155
168
(
1880
).
7.
G. H.
Bryan
, “
The waves on a rotating liquid spheroid of finite ellipticity
,”
Philos. Trans. R. Soc. London, Ser. A
180
,
187
219
(
1889
).
8.
L. R. M.
Maas
, “
On the amphidromic structure of inertial waves in a rectangular parallelepiped
,”
Fluid Dyn. Res.
33
,
373
401
(
2003
).
9.
L. R. M.
Maas
, “
Wave focussing and ensuing mean flow due to symmetry breaking in rotating fluids
,”
J. Fluid Mech.
437
,
13
28
(
2001
).
10.
D.
Fultz
, “
A note on overstability and the elastoid-inertia oscillations of Kelvin, Solberg and Bjerknes
,”
J. Meteorol.
16
,
199
208
(
1959
).
11.
A. D.
McEwan
, “
Inertial oscillations in a rotating fluid cylinder
,”
J. Fluid Mech.
40
,
603
640
(
1970
).
12.
R.
Manasseh
, “
Breakdown regimes of inertia waves in a precessing cylinder
,”
J. Fluid Mech.
243
,
261
296
(
1992
).
13.
R.
Manasseh
, “
Distortions of inertia waves in a rotating fluid cylinder forced near its fundamental mode resonance
,”
J. Fluid Mech.
265
,
345
370
(
1994
).
14.
J. J.
Kobine
, “
Inertial wave dynamics in a rotating and precessing cylinder
,”
J. Fluid Mech.
303
,
233
252
(
1995
).
15.
R. O. R. Y.
Thompson
, “
A mechanism for angular momentum mixing
,”
Geophys. Astrophys. Fluid Dyn.
12
,
221
234
(
1979
).
16.
K. D.
Aldridge
and
A.
Toomre
, “
Axisymmetric oscillations of a fluid in a rotating spherical container
,”
J. Fluid Mech.
37
,
307
323
(
1969
).
17.
W. V. R.
Malkus
, “
Precession of the earth as the cause of geomagnetism
,”
Science
160
,
259
264
(
1968
).
18.
J.
Vanyo
,
P.
Wilde
,
P.
Cardin
, and
P.
Olson
, “
Experiments on precessing flows in the earth's liquid core
,”
Geophys. J. Int.
121
,
136
142
(
1995
).
19.
R. C.
Beardsley
, “
An experimental study of inertial waves in a closed cone
,”
Stud. Appl. Math.
49
,
187
196
(
1970
).
20.
G. P.
Bewley
,
D. P.
Lathrop
,
L. R. M.
Maas
, and
K. R.
Sreenivasan
, “
Inertial waves in rotating grid turbulence
,”
Phys. Fluids
19
,
071701
(
2007
).
21.
C.
Lamriben
,
P. P.
Cortet
,
F.
Moisy
, and
L. R. M.
Maas
, “
Excitation of inertial modes in a closed grid turbulence experiment under rotation
,”
Phys. Fluids
23
,
015102
(
2011
).
22.
J.
Boisson
,
C.
Lamriben
,
L. R. M.
Maas
,
P.
Cortet
, and
F.
Moisy
, “
Inertial waves in rotating grid turbulence
,”
Phys. Fluids
24
,
076602
(
2012
).
23.
A. M. M.
Manders
and
L. R. M.
Maas
, “
Observations of inertial waves in a rectangular basin with one sloping boundary
,”
J. Fluid Mech.
493
,
59
88
(
2003
).
24.
D.
Rao
, “
Free gravitational oscillations in rotating rectangular basins
,”
J. Fluid Mech.
25
,
523
555
(
1966
).
25.
O.
Bokhove
and
E.
Johnson
, “
Hybrid coastal and interior modes for two-dimensional flow in a cylindrical ocean
,”
J. Phys. Oceanogr.
29
,
93
118
(
1999
).
26.
S.
Nurijanyan
,
J.
van der Vegt
, and
O.
Bokhove
, “
Hamiltonian discontinuous Galerkin FEM for linear, rotating incompressible Euler equations: Inertial waves
,”
J. Comput. Phys.
241
,
502
525
(
2013
).
27.
M.
Rieutord
,
B.
Georgeot
, and
L.
Valdettaro
, “
Inertial waves in a rotating spherical shell: attractors and asymptotic spectrum
,”
J. Fluid Mech.
435
,
103
144
(
2001
).
28.
O.
Bokhove
and
V. R.
Ambati
, “
Hybrid Rossby-shelf modes in a laboratory ocean
,”
J. Phys. Oceanogr.
39
(
10
),
2523
2542
(
2009
).
You do not currently have access to this content.