The integral momentum balance on a growing boiling bubble is investigated. All forces acting on the bubble are detailed, and the methods and assumptions used to calculate their integral resultants are discussed. The momentum balance computation is then performed using experimental data of bubbles growing on an artificial nucleation site in a controlled environment. The relative magnitude of each force component is compared, showing negligible dynamic forces, upwards forces composed mainly of the buoyancy and contact pressure components, and downwards forces being exclusively due to surface tension and adhesion. The difficulty encountered in measuring the apparent contact angle due to mirage effects has been highlighted; a new method, fitting numerically simulated bubble profile to the contour measurements has been proposed and used to correct the effects of refraction on the bubble profile determination. As all forces acting on the bubble were measured, it was possible to estimate the residuals of the momentum balance. Their small value validated both the expressions used for the forces and the methodology to evaluate their value.

1.
Lord
Rayleigh
, “
VIII. On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag. Ser. 6
34
,
94
98
(
1917
).
2.
M. S.
Plesset
and
A.
Prosperetti
, “
Bubble dynamics and cavitation
,”
Annu. Rev. Fluid Dyn.
9
,
145
185
(
1977
).
3.
T. H.
Cochrane
and
J. C.
Aydelott
, “
Effects of subcooling and gravity level on boiling in the discrete bubble region
,” Technical Note TN D-3449 (NASA,
1966
).
4.
T. H.
Cochrane
,
J. C.
Aydelott
, and
C. M.
Spuckler
, “
Experimental investigation of nucleate boiling bubble dynamics in normal and zero gravities
,” Technical Note TN D-4301 (NASA,
1968
).
5.
L.
Zeng
,
J.
Klausner
, and
R.
Mei
, “
A unified model for the prediction of bubble detachment diameters in boiling systems
,”
Int. J. Heat Mass Transfer
36
,
2261
2270
(
1993
).
6.
J.
Klausner
,
R.
Mei
,
D.
Bernhard
, and
L.
Zeng
, “
Vapor bubble departure in forced convection boiling
,”
Int. J. Heat Mass Transfer
36
,
651
662
(
1993
).
7.
R.
Mei
and
J.
Klausner
, “
Shear lift force on spherical bubbles
,”
Int. J. Heat Fluid Flow
15
,
62
65
(
1994
).
8.
Y.
Buyevich
and
B.
Webbon
, “
Dynamics of vapour bubbles in nucleate boiling
,”
Int. J. Heat Mass Transfer
39
,
2409
2426
(
1996
).
9.
G.
Duhar
, “
Croissance et détachement de bulles en paroi d'un écoulement cisaillé: étude expérimentale de l'injection et de l'ébullition nucléée
,” Ph.D. thesis (
Institut National Polythechnique de Toulouse
,
2003
).
10.
G.
Duhar
and
C.
Colin
, “
Dynamics of bubble growth and detachment in a viscous shear flow
,”
Phys. Fluids
18
,
077101
(
2006
).
11.
G.
Duhar
,
G.
Riboux
, and
C.
Colin
, “
Vapour bubble growth and detachment at the wall of shear flow
,”
Heat Mass Transfer
45
,
847
855
(
2009
).
12.
S.
Di Bari
and
A. J.
Robinson
, “
Experimental study of gas injected bubble growth from submerged orifices
,”
Exp. Therm. Fluid Sci.
44
,
124
137
(
2013
).
13.
F. J.
Lesage
,
J. S.
Cotton
, and
A. J.
Robinson
, “
Analysis of quasi-static vapour bubble shape during growth and departure
,”
Phys. Fluids
25
,
067103
(
2013
).
14.
S.
Siedel
,
S.
Cioulachtjian
, and
J.
Bonjour
, “
Experimental analysis of bubble growth, departure and interactions during pool boiling on artificial nucleation sites
,”
Exp. Therm. Fluid Sci.
32
,
1504
1511
(
2008
).
15.
S.
Siedel
,
S.
Cioulachtjian
,
A.
Robinson
, and
J.
Bonjour
, “
Electric field effects during nucleate boiling from an artificial nucleation site
,”
Exp. Therm. Fluid Sci.
35
,
762
771
(
2011
).
16.
S.
Siedel
,
S.
Cioulachtjian
,
S.
Di Bari
,
A.
Robinson
, and
J.
Bonjour
, “
Analysis of the interface curvature evolution during bubble growth
,”
Heat Transfer Eng.
35
(
5
),
528
536
(
2014
).
17.
S.
Kandlikar
and
B.
Stumm
, “
A control volume approach for instigating forces on a departing bubble under subcooled flow boiling
,”
ASME J. Heat Transfer
117
,
990
997
(
1995
).
18.
Y.
Chen
,
M.
Groll
,
R.
Mertz
, and
R.
Kulenovic
, “
Bubble dynamics of boiling of propane and iso-butane on smooth and enhanced tubes
,”
Exp. Thermal Fluid Sci.
28
(
2-3
),
171
178
(
2004
).
19.
N.
Ginet
, “
Analyse des mécanismes contrôlant la croissance et l'ascension d'une bulle isolée en ébullition nucléée
,” Ph.D. thesis (
INSA de Lyon
,
1999
).
20.
J.
Magnaudet
,
M.
Rivero
, and
J.
Fabre
, “
Accelerated flows past a rigid sphere or a spherical bubble. I. Steady straining flow
,”
J. Fluid Mech.
284
,
97
135
(
1995
).
21.
D.
Legendre
,
C.
Colin
, and
T.
Coquard
, “
Lift, drag and added mass of a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow
,”
Philos. Trans. R. Soc. London
366
,
2233
2248
(
2008
).
22.
A.
Robinson
and
R.
Judd
, “
The dynamic of spherical bubble growth
,”
Int. J. Heat Mass Transfer
47
,
5101
5113
(
2004
).
23.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
, Gouttes, bulles, perles et ondes (Belin,
2002
).
24.
S.
Petrovic
,
A.
Robinson
, and
R.
Judd
, “
Marangoni heat transfer in subcooled nucleate pool boiling
,”
Int. J. Heat Mass Transfer
47
,
5115
5128
(
2004
).
25.
R.
Marek
and
J.
Straub
, “
The origin of thermocapillary convection in subcooled nucleate pool boiling
,”
Int. J. Heat Mass Transfer
44
,
619
632
(
2001
).
26.
M.
Cooper
, “
The “mirage” in boiling
,”
Int. J. Heat Mass Transfer
26
,
1088
1090
(
1983
).
27.
M.
Gentes
,
G.
Rousseaux
,
P.
Couliet
, and
P.-G.
De Gennes
, “
Resolution of the Young-Laplace equation by a geometrical method using curvature
,”
C. R. Phys.
6
,
1027
1033
(
2005
).
28.
R. L.
Panton
,
Incompressible Flow
(
John Wiley & Sons
,
New York
,
1984
).
You do not currently have access to this content.