Analysis of the helical vortices measured behind a model wind turbine in a water channel are reported. Phase-locked measurements using planar particle image velocimetry are taken behind a Glauert rotor to investigate the evolution and breakdown of the helical vortex structures. Existing linear stability theory predicts helical vortex filaments to be susceptible to three unstable modes. The current work presents tip and root vortex evolution in the wake for varying tip speed ratio and shows a breaking of the helical symmetry and merging of the vortices due to mutual inductance between the vortical filaments. The merging of the vortices is shown to be steady with rotor phase, however, small-scale non-periodic meander of the vortex positions is also observed. The generation of the helical wake is demonstrated to be closely coupled with the blade aerodynamics, strongly influencing the vortex properties which are shown to agree with theoretical predictions of the circulation shed into the wake by the blades. The mutual inductance of the helices is shown to occur at the same non-dimensional wake distance.

1.
P. A.
Alfredsson
and
J. A.
Dahlberg
, “
A preliminary wind tunnel study of windmill wake dispersion in various flow conditions
,” Technical Report No. aU-1499 (
The Aeronautical Research Institute of Sweden
,
1979
), Part 7.
2.
J. H.
Walther
,
M.
Guénot
,
E.
Machefaux
,
J. T.
Rasmussen
,
P.
Chatelain
,
V. L.
Okulov
,
J. N.
Sørensen
,
M.
Bergdorf
, and
P.
Koumoutsakos
, “
A numerical study of the stability of helical vortices using vortex methods
,”
J. Phys.: Conf. Ser.
75
,
012034
(
2007
).
3.
S.
Ivanell
,
R.
Mikkelsen
,
J. N.
Sørensen
, and
D.
Henningson
, “
Stability analysis of the tip vortices of a wind turbine
,”
Wind Energy
13
,
705
715
(
2010
).
4.
I.
Dobrev
,
B.
Maalouf
,
N.
Troldborg
, and
F.
Massouh
, “
Investigation of the wind turbine vortex structure
,” in
Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 7–10 July 2008
.
5.
H.
Hu
,
Z.
Yang
, and
P.
Sarkar
, “
Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind
,”
Exp. Fluids
52
,
1277
1294
(
2012
).
6.
F.
Caradonna
, “
Performance measurement and wake characteristics of a model rotor in axial flight
,”
J. Am. Helicopter Soc.
44
,
101
108
(
1999
).
7.
M. J.
Bhagwat
and
J. G.
Leishman
, “
Stability analysis of helicopter rotor wakes in axial flight
,”
J. Am. Helicopter Soc.
45
,
165
178
(
2000
).
8.
M.
Felli
,
R.
Camussi
, and
F. D.
Felice
, “
Mechanisms of evolution of the propeller wake in the transition and far fields
,”
J. Fluid Mech.
682
,
5
53
(
2011
).
9.
H.
Levy
and
G.
Forsdyke
, “
The steady motion and stability of a helical vortex
,”
Proc. R. Soc. London, Ser. A
120
,
670
690
(
1928
).
10.
S.
Widnall
, “
The stability of a helical vortex filament
,”
J. Fluid Mech.
54
,
641
663
(
1972
).
11.
B. P.
Gupta
and
R. G.
Loewy
, “
Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices
,”
AIAA J.
12
,
1381
1387
(
1974
).
12.
D. H.
Wood
and
J.
Boersma
, “
On the motion of multiple helical vortices
,”
J. Fluid Mech.
447
,
149
171
(
2001
).
13.
V. L.
Okulov
, “
On the stability of multiple helical vortices
,”
J. Fluid Mech.
521
,
319
342
(
2004
).
14.
V. L.
Okulov
and
J. N.
Sørensen
, “
Stability of helical tip vortices in a rotor far wake
,”
J. Fluid Mech.
576
,
1
25
(
2007
).
15.
K. W.
McAlister
and
J. T.
Heineck
, “
Measurements of the early development of trailing vorticity from a rotor
,” Technical Report No. TP-2002-211848 (
National Aeronautics and Space Administration
,
2002
).
16.
R. J.
Barthelmie
,
K.
Hansen
,
S. T.
Frandsen
,
O.
Rathmann
,
J. G.
Schepers
,
W.
Schlez
,
J.
Phillips
,
K.
Rados
,
A.
Zervos
,
E. S.
Politis
, and
P. K.
Chaviaropoulos
, “
Modelling and measuring flow and wind turbine wakes in large wind farms
,”
Wind Energy
12
,
431
444
(
2009
).
17.
Y.
Hattori
and
Y.
Fukumoto
, “
Short-wavelength stability analysis of a helical vortex tube
,”
Phys. Fluids
21
,
014104
(
2009
).
18.
L. J.
Vermeer
, “
A review of wind turbine wake research at TU Delft
,”
A Collection of the 2001 ASME Wind Energy Symposium Technical Papers
(
ASME
,
New York
,
2001
), pp.
103
113
.
19.
J. N.
Sørensen
, “
Aerodynamic aspects of wind energy conversion
,”
Annu. Rev. Fluid Mech.
43
,
427
428
(
2011
).
20.
J. N.
Sørensen
, “
Instability of helical tip vortices in rotor wakes
,”
J. Fluid Mech.
682
,
1
4
(
2011
).
21.
M.
Sherry
,
J.
Sheridan
, and
D.
Lo Jacono
, “
Characterisation of a horizontal axis wind turbine's tip and root vortices
,”
Exp. Fluids
54
,
1
19
(
2013
).
22.
I. V.
Naumov
,
V. V.
Rahmanov
,
V. L.
Okulov
,
C. M.
Velte
,
K. E.
Meyer
, and
R. F.
Mikkelsen
, “
Flow diagnostics downstream of a tribladed rotor model
,”
Thermophys. Aeromechanics
19
,
171
181
(
2012
).
23.
H.
Glauert
, in
Airplane Propellers, Aerodynamic Theory
, edited by
W. F.
Durand
(
Dover
,
New York
,
1935
), pp.
169
360
.
24.
E. N.
Jacobs
and
A.
Sherman
, “
Airfoil section characteristics as affected by variations of the Reynolds number
,” Technical Report No. 586 (
National Advisory Committee for Aeronautics
,
1937
).
25.
R. E.
Wilson
and
P. B. S.
Lissaman
, “
Applied aerodynamics of wind power machines
,” Technical Report No. NSF-RA-N-74-113 (
Oregon State University
,
1974
).
26.
N. J.
Vermeer
, “
How big is a tip vortex?
” (
Institute for Wind Energy
,
Delft University of Technology
,
1996
), pp.
77
82
.
27.
P. R.
Ebert
and
D. H.
Wood
, “
The near wake of a model horizontal-axis wind turbine. Part 2: General features of the three-dimensional flowfield
,”
Renewable Energy
18
,
513
534
(
1999
).
28.
W. Z.
Shen
,
R. M.
Mikkelsen
,
J. N.
Sørensen
, and
C.
Bak
, “
Tip loss corrections for wind turbine computations
,”
Wind Energy
8
,
457
475
(
2005
).
29.
M.
Nazarinia
,
D.
Lo Jacono
,
M. C.
Thompson
, and
J.
Sheridan
, “
Flow behind a cylinder forced by a combination of oscillatory translational and rotational motions
,”
Phys. Fluids
21
,
051701
(
2009
).
30.
M.
Sherry
,
J.
Sheridan
, and
D.
Lo Jacono
, “
An experimental investigation of the recirculation zone formed downstream of a forward facing step
,”
J. Wind. Eng. Ind. Aerodyn.
98
,
888
894
(
2010
).
31.
D.
Tudball-Smith
,
J. S.
Leontini
,
J.
Sheridan
, and
D.
Lo Jacono
, “
Streamwise forced oscillations of circular and square cylinders
,”
Phys. Fluids
24
,
111703
(
2012
).
32.
A.
Nemes
,
J.
Zhao
,
D.
Lo Jacono
, and
J.
Sheridan
, “
The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack
,”
J. Fluid Mech.
710
,
102
130
(
2012
).
33.
A.
Fouras
,
D.
Lo Jacono
, and
K.
Hourigan
, “
Target free stereo PIV: A novel technique with inherent error estimation and improved accuracy
,”
Exp. Fluids
44
,
317
329
(
2008
).
34.
T. T.
Lim
and
T. B.
Nickels
,
Fluid Vortices
(
Kluwer
,
Boston
,
1995
), Chap. 4.
35.
M.
Felli
,
F.
Di Felice
,
G.
Guj
, and
R.
Camussi
, “
Analysis of the propeller wake evolution by pressure and velocity phase measurements
,”
Exp. Fluids
41
,
441
451
(
2006
).
36.
P.
Chakraborty
,
S.
Balachandar
, and
R. J.
Adrian
, “
On the relationships between local vortex identification schemes
,”
J. Fluid Mech.
535
,
189
214
(
2005
).
37.
M.
Raffel
,
C.
Willert
, and
J.
Kompenhans
,
Particle Image Velocimetry: A Practical Guide
(
Springer
,
New York
,
2002
).
38.
L.
Graftieaux
,
M.
Michard
, and
N.
Grosjean
, “
Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows
,”
Meas. Sci. Technol.
12
,
1422
1429
(
2001
).
39.
W. J.
Devenport
,
M. C.
Rife
,
S. I.
Liapis
, and
G. J.
Follin
, “
The structure and development of a wing tip vortex
,”
J. Fluid Mech.
312
,
67
106
(
1996
).
40.
A. L.
Heyes
,
R. F.
Jones
, and
D. A. R.
Smith
, “
Wandering of wing-tip vortices
,” in
Proceedings of the 12th International Symposium on the Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2004
.
41.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
42.
L.
Sirovich
, “
Turbulence and the dynamics of coherent structures. Part I: Coherent structures
,”
Q. Appl. Math.
45
,
561
571
(
1987
).
43.
B. P.
Epps
and
A. H.
Techet
, “
An error threshold criterion for singular value decomposition modes extracted from PIV data
,”
Exp. Fluids
48
,
355
367
(
2010
).
44.
A.
Betz
, “
Behaviour of vortex systems
,” Technical Report No. NACA TM-713 (
National Advisory Committee for Aeronautics
,
1933
).
45.
S.
Ivanell
,
R.
Mikkelsen
,
J. N.
Sørensen
, and
D.
Henningson
, “
Analysis of numerically generated wake structures
,”
Wind Energy
12
,
63
80
(
2009
).
46.
M.
Ramasamy
and
J.
Leishman
, “
Reynolds number-based blade tip vortex model
,” in
Proceedings of the 61st Annual Forum and Technology Display of the American Helicopter Society International
(
AHS International
,
2007
), Vol.
61
, pp.
1
13
.
47.
M. J.
Bhagwat
and
J. G.
Leishman
, “
Measurements of bound and wake circulation on a helicopter rotor
,”
J. Aircraft
37
(
2
),
227
234
(
2000
).
You do not currently have access to this content.