Erosion of solid material by flowing fluids plays an important role in shaping landforms, and in this natural context is often dictated by processes of high complexity. Here, we examine the coupled evolution of solid shape and fluid flow within the idealized setting of a cylindrical body held against a fast, unidirectional flow, and eroding under the action of fluid shear stress. Experiments and simulations both show self-similar evolution of the body, with an emerging quasi-triangular geometry that is an attractor of the shape dynamics. Our fluid erosion model, based on Prandtl boundary layer theory, yields a scaling law that accurately predicts the body's vanishing rate. Further, a class of exact solutions provides a partial prediction for the body's terminal form as one with a leading surface of uniform shear stress. Our simulations show this predicted geometry to emerge robustly from a range of different initial conditions, and allow us to explore its local stability. The sharp, faceted features of the terminal geometry defy the intuition of erosion as a globally smoothing process.

1.
S.
Schumm
and
H.
Khan
, “
Experimental study of channel patterns
,”
Geol. Soc. Am. Bull.
83
,
1755
1770
(
1972
).
2.
S.
Ikeda
,
G.
Parker
, and
K.
Sawai
, “
Bend theory of river meanders. Part 1. Linear development
J. Fluid Mech.
112
,
363
377
(
1981
).
3.
A.
Ward
, “
Yardangs on Mars: Evidence of recent wind erosion
,”
J. Geophys. Res., [Solid Earth]
84
,
8147
8166
, doi: (
1979
).
4.
A.
Ward
and
R.
Greeley
, “
Evolution of the yardangs at Rogers Lake, California
,”
Geol. Soc. Am. Bull.
95
,
829
837
(
1984
).
5.
A.
Scheidegger
, “
A physical theory of the formation of hoodoos
,”
Pure Appl. Geophys.
41
,
101
106
(
1958
).
6.
S.
Wang
, “
Coastal hoodoos
,”
Encyclopedia of Coastal Science
(
Springer
,
Netherlands
,
2005
), pp.
260
262
.
7.
P. K.
Shah
, “
Pathophysiology of coronary thrombosis: Role of plaque rupture and plaque erosion
,”
Prog. Cardiovasc. Dis.
44
,
357
368
(
2002
).
8.
H. C.
Groen
,
F. J.
Gijsen
,
A.
van der Lugt
,
M. S.
Ferguson
,
T. S.
Hatsukami
,
A. F.
van der Steen
,
C.
Yuan
, and
J. J.
Wentzel
, “
Plaque rupture in the carotid artery is localized at the high shear stress region: A case report
,”
Stroke
38
,
2379
2381
(
2007
).
9.
C.
Picioreanu
,
M. C.
van Loosdrecht
, and
J. J.
Heijnen
, “
Two-dimensional model of biofilm detachment caused by internal stress from liquid flow
,”
Biotechnol. Bioeng.
72
,
205
218
(
2001
).
10.
G.
Nanz
and
L. E.
Camilletti
, “
Modeling of chemical-mechanical polishing: A review
,”
IEEE Trans. Semiconduct. Manuf.
8
,
382
389
(
1995
).
11.
S.
Gupta
,
The Classical Stefan Problem: Basic Concepts, Modelling and Analysis
(
Elsevier
,
Amsterdam
,
2003
).
12.
L.
Ristroph
,
M.
Moore
,
S.
Childress
,
M.
Shelley
, and
J.
Zhang
, “
Sculpting of an erodible body by flowing water
,”
Proc. Natl. Acad. Sci. U.S.A.
109
,
19606
19609
(
2012
).
13.
H.
Helmholtz
, “
Über diskontinuierliche Flüssigkeitsbewegungen
Philos. Mag.
36
,
337
346
(
1868
).
14.
G.
Kirchhoff
, “
Zur Theorie freier Flüssigkeitsstrahlen
J. Reine Angew. Math.
70
,
289
298
(
1869
).
15.
G.
Parker
and
N.
Izumi
, “
Purely erosional cyclic and solitary steps created by flow over a cohesive bed
,”
J. Fluid Mech.
419
,
203
238
(
2000
).
16.
P.-Y.
Lagrée
, “
Erosion and sedimentation of a bump in fluvial flow
,”
C. R. Acad. Sci., Ser. IIB Mech.
328
,
869
874
(
2000
).
17.
H.
Schlichting
,
Boundary Layer Theory
(
McGraw-Hill
,
New York
,
1960
).
18.
C.
Pozrikidis
,
Introduction to Theoretical and Computational Fluid Dynamics
(
Oxford University Press
,
New York
,
1997
).
19.
V. V.
Sychëv
,
A. I.
Ruban
,
V. V.
Sychev
, and
G. L.
Korolev
,
Asymptotic Theory of Separated Flows
(
Cambridge University Press
,
Cambridge
,
1998
).
20.
J.
Hureau
,
E.
Brunon
, and
P.
Legallais
, “
Ideal free streamline flow over a curved obstacle
,”
J. Comput. Appl. Math.
72
,
193
214
(
1996
).
21.
S.
Alben
,
M.
Shelley
, and
J.
Zhang
, “
How flexibility induces streamlining in a two-dimensional flow
,”
Phys. Fluids
16
,
1694
1713
(
2004
).
22.
G.
Batchelor
, “
A proposal concerning laminar wakes behind bluff bodies at large Reynolds number
,”
J. Fluid Mech.
1
,
388
(
1956
).
23.
G.
Parkinson
and
T.
Jandali
, “
A wake source model for bluff body potential flow
,”
J. Fluid Mech.
40
,
577
594
(
1970
).
24.
T.
Wu
, “
Cavity and wake flows
,”
Annu. Rev. Fluid Mech.
4
,
243
284
(
1972
).
25.
M.
Brillouin
, “
Les surfaces de glissement d'Helmholtz et la résistance des fluides
,”
Ann. Chim. Phys.
23
,
145
230
(
1911
).
26.
H.
Villat
, “
Sur la validité des solutions de certains problèmes d'hydrodynamique
,”
J. Math. Pures Appl.
10
,
231
290
(
1914
).
27.
T. V.
Kármán
, “
Über laminaire und turbulente Reibung
,”
Z. Angew. Math. Mech.
1
,
233
252
(
1921
).
28.
K.
Pohlhausen
, “
Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht
,”
Z. Angew. Math. Mech.
1
,
252
268
(
1921
).
29.
M. G.
Crandall
and
P.-L.
Lions
, “
Viscosity solutions of Hamilton-Jacobi equations
,”
Trans. Am. Math. Soc.
277
,
1
42
(
1983
).
30.
J. A.
Sethian
,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(
Cambridge University Press
,
Cambridge
,
1999
), Vol.
3
.
31.
V. M.
Falkner
and
S. W.
Skan
, “
Solutions of the boundary layer equations
,”
Philos. Mag.
12
,
865
896
(
1931
).
32.
Here we normalize time by
$t^*= 2 a_0 / V_n ^*$
t*=2a0/Vn*
, where
$V_n ^* = 1$
Vn*=1
cm/hr for the experiments, as opposed to normalizing by tf. The quantity t* estimates the vanishing time in the case of no erosion on the backside of the body, allowing a more faithful comparison between the experimental and simulated front evolution.
33.
S.
Vogel
, “
Drag and reconfiguration of broad leaves in high winds
,”
J. Exp. Bot.
40
,
941
948
(
1989
).
34.
S.
Alben
,
M.
Shelley
, and
J.
Zhang
, “
Drag reduction through self-similar bending of a flexible body
,”
Nature (London)
420
,
479
481
(
2002
).
35.
E.
Achenbach
, “
Distribution of local pressure and skin friction around a circular cylinder in cross-flow up to Re = 5 × 106
,”
J. Fluid Mech.
34
,
625
639
(
1968
).
36.
W. P.
Graebel
,
Engineering Fluid Mechanics
(
Taylor and Francis
,
New York
,
2001
).
37.
F.
Engelund
and
J.
Fredsoe
, “
Sediment ripples and dunes
,”
Annu. Rev. Fluid Mech.
14
,
13
37
(
1982
).
38.
A.
Fowler
, “
Dunes and drumlins
,”
Geomorphological Fluid Mechanics
(
Springer
,
Berlin
,
2001
), pp.
430
454
.
39.
F.
Charru
,
B.
Andreotti
, and
P.
Claudin
, “
Sand ripples and dunes
,”
Annu. Rev. Fluid Mech.
45
,
469
493
(
2013
).
40.
K.
Kroy
,
G.
Sauermann
, and
H. J.
Herrmann
, “
Minimal model for sand dunes
,”
Phys. Rev. Lett.
88
,
054301
(
2002
).
41.
K.
Kroy
,
G.
Sauermann
, and
H. J.
Herrmann
, “
Minimal model for aeolian sand dunes
,”
Phys. Rev. E
66
,
031302
(
2002
).
42.
P.-Y.
Lagrée
, “
A triple deck model of ripple formation and evolution
,”
Phys. Fluids
15
,
2355
(
2003
).
43.
J. T.
Hack
, “
Dynamic equilibrium and landscape evolution
,”
Theories of Landform Development
(
State University of New York
,
1975
), pp.
87
102
.
44.
O.
Devauchelle
,
A.
Petroff
,
A.
Lobkovsky
, and
D.
Rothman
, “
Longitudinal profile of channels cut by springs
,”
J. Fluid Mech.
667
,
38
47
(
2011
).
45.
D.
Burbank
,
A.
Blythe
,
J.
Putkonen
,
B.
Pratt-Sitaula
,
E.
Gabet
,
M.
Oskin
,
A.
Barros
, and
T.
Ojha
, “
Decoupling of erosion and precipitation in the Himalayas
,”
Nature (London)
426
,
652
655
(
2003
).
46.
A.
Matmon
,
P.
Bierman
,
J.
Larsen
,
S.
Southworth
,
M.
Pavich
, and
M.
Caffee
, “
Temporally and spatially uniform rates of erosion in the southern Appalachian Great Smoky Mountains
,”
Geology
31
,
155
158
(
2003
).
47.
R.
Camassa
,
R. M.
McLaughlin
,
M. N. J.
Moore
, and
A.
Vaidya
, “
Brachistochrones in potential flow and the connection to Darwin's theorem
,”
Phys. Lett. A
372
,
6742
6749
(
2008
).
48.
V.
Sychev
, “
Laminar separation
,”
Fluid Dyn.
7
,
407
417
(
1972
).
49.
R.
Meyer
, “
A view of the triple deck
,”
SIAM J. Appl. Math.
43
,
639
663
(
1983
).
50.
T.
Hou
,
J.
Lowengrub
, and
M.
Shelley
, “
Removing the stiffness from interfacial flows with surface tension
,”
J. Comput. Phys.
114
,
312
338
(
1994
).
You do not currently have access to this content.