The problem of fast viscous steady Rayleigh-Bénard convection in a rectangular enclosure is revisited using asymptotic and numerical methods. There are two generic cases: in the first, there is zero shear stress at all boundaries; in the second, there is zero shear stress at the vertical boundaries, but no slip at the horizontal ones. For the first case, we reconcile our new numerical solutions to the full equations with earlier asymptotic results for large Rayleigh number and effectively infinite Prandtl number. For the second case, we first derive the corresponding asymptotic theory and then reconcile it also with the relevant full numerical solutions. However, the latter also indicate behavior which the asymptotic theory does not predict, for Rayleigh numbers in excess of just over 106 and aspect ratios in excess of around 1.1.

1.
L.-N.
Moresi
and
V. S.
Solomatov
, “
Numerical investigations of 2D convection with extremely large viscosity variations
,”
Phys. Fluids
7
(
9
),
2154
2162
(
1995
).
2.
S. D.
King
,
A.
Raefsky
, and
B. H.
Hager
, “
Conman: Vectorizing a finite element code for incompressible two-dimensional convection in the earth's mantle
,”
Phys. Earth Planet. Inter.
59
,
195
207
(
1990
).
3.
B. J.
Travis
,
C.
Anderson
,
J.
Baumgardner
,
C. W.
Gable
,
B. H.
Hager
,
R. J.
O'Connell
,
P.
Olson
,
A.
Raefsky
, and
G.
Schubert
, “
A benchmark comparison for numerical methods for infinite Prandtl number thermal convection in two-dimensional Cartesian geometry
,”
Geophys. Astrophys. Fluid Dyn.
55
,
137
160
(
1990
).
4.
B.
Blankenbach
,
F.
Busse
,
U.
Christensen
,
L.
Cserepes
,
D.
Gunkel
,
U.
Hansen
,
H.
Harder
,
G.
Jarvis
,
M.
Koch
,
G.
Marquart
,
D.
Moore
,
P.
Olson
,
H.
Schmeling
, and
T.
Schnaubelt
, “
A benchmark comparison for mantle convection codes
,”
Geophys. J. Int.
98
,
23
38
(
1989
).
5.
S. D.
King
, “
On topography and geoid from 2D stagnant lid convection calculations
,”
Geochem., Geophys., Geosyst.
10
,
Q03002
, doi: (
2009
).
6.
P. E.
van Keken
,
C.
Currie
,
S. D.
King
,
M. D.
Behn
,
J.
Cagnioncle
,
A.
He
,
R. F.
Katz
,
S.-C.
Lin
,
E. M.
Parmentier
,
M.
Spiegelman
, and
K.
Wang
, “
A community benchmark for subduction zone modeling
,”
Phys. Earth Planet. Inter.
171
,
187
197
(
2008
).
7.
S. D.
King
,
C.
Lee
,
P. E.
van Keken
,
W.
Leng
,
S.
Zhong
,
E.
Tan
,
N.
Tosi
, and
M. C.
Kameyama
, “
A community benchmark for 2D Cartesian compressible convection in the Earth's mantle
,”
Geophys. J. Int.
180
,
73
87
(
2010
).
8.
D. E.
Koglin
,
S. R.
Ghias
,
S. D.
King
,
G. T.
Jarvis
, and
J. P.
Lowman
, “
Mantle convection with reversing mobile plates: A benchmark study
,”
Geochem., Geophys., Geosyst.
6
,
Q09003
, doi: (
2005
).
9.
P. E.
van Keken
,
S. D.
King
,
H.
Schmeling
,
U. R.
Christensen
,
D.
Neumeister
, and
M.-P.
Doin
, “
A comparison of methods for the modeling of thermochemical convection
,”
J. Geophys. Res. - Solid Earth
102
,
22477
22495
, doi: (
1997
).
10.
G. O.
Roberts
, “
Fast viscous Bénard convection
,”
Geophys. Astrophys. Fluid Dyn.
12
,
235
272
(
1979
).
11.
J.
Jimenez
and
J. A.
Zufiria
, “
A boundary-layer analysis of Rayleigh-Bénard convection at large Rayleigh number
,”
J. Fluid Mech.
178
,
53
71
(
1987
).
12.
A. C.
Fowler
,
Mathematical Geoscience
(
Springer-Verlag
,
Berlin
,
2011
).
13.
G. P.
Chini
and
S. M.
Cox
, “
Large Rayleigh number thermal convection: heat flux predictions and strongly nonlinear solutions
,”
Phys. Fluids
21
,
083603
(
2009
).
14.
G.
Veronis
, “
Large amplitude Bénard convection
,”
J. Fluid Mech.
26
,
49
68
(
1966
).
15.
D.
Turcotte
and
R. E.
Oxburgh
, “
Finite amplitude convective cells and continental drift
,”
J. Fluid Mech.
28
,
29
42
(
1967
).
16.
J. M.
Strauss
, “
Finite amplitude double diffusive convection
,”
J. Fluid Mech.
56
,
353
374
(
1972
).
17.
D. R.
Moore
and
N. O.
Weiss
, “
Two-dimensional Rayleigh-Bénard convection
,”
J. Fluid Mech.
58
,
289
312
(
1973
).
18.
P.
Olson
and
G. M.
Corcos
, “
A boundary layer model for mantle convection with surface plates
,”
Geophys. J. R. Astron. Soc.
62
,
195
219
(
1980
).
19.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: A unifying theory
,”
J. Fluid Mech.
407
,
27
56
(
2000
).
20.
S.
Grossmann
and
D.
Lohse
, “
Thermal convection for large Prandtl numbers
,”
Phys. Rev. Lett.
86
,
3316
3319
(
2001
).
You do not currently have access to this content.