The classical long-wave theory (also known as lubrication approximation) applied to fluid spreading or retracting on a solid substrate is derived under a set of assumptions, typically including small slopes and negligible inertial effects. In this work, we compare the results obtained by using the long-wave model and by simulating directly the full two-phase Navier-Stokes equations employing a volume-of-fluid method. In order to isolate the influence of the small slope assumption inherent in the long-wave theory, we present a quantitative comparison between the two methods in the regime where inertial effects and the influence of gas phase are negligible. The flow geometries that we consider include wetting and dewetting drops within a broad range of equilibrium contact angles in planar and axisymmetric geometries, as well as liquid rings. For perfectly wetting spreading drops we find good quantitative agreement between the models, with both of them following rather closely Tanner's law. For partially wetting drops, while in general we find good agreement between the two models for small equilibrium contact angles, we also uncover differences which are particularly evident in the initial stages of evolution, for retracting drops, and when additional azimuthal curvature is considered. The contracting rings are also found to evolve differently for the two models, with the main difference being that the evolution occurs on the faster time scale when the long-wave model is considered, although the ring shapes are very similar between the two models.

1.
R.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
(
1986
).
2.
Y.
Shikhmurzaev
, “
Moving contact lines in liquid/liquid/solid systems
,”
J. Fluid Mech.
334
,
211
(
1997
).
3.
P. D.
Spelt
, “
A level-set approach for simulations of flows with multiple moving contact lines with hysteresis
,”
J. Comput. Phys.
207
,
389
(
2005
).
4.
S.
Afkhami
,
S.
Zaleski
, and
M.
Bussmann
, “
A mesh-dependent model for applying dynamic contact angles to VOF simulations
,”
J. Comput. Phys.
228
,
5370
(
2009
).
5.
J. E.
Sprittles
and
Y. D.
Shikhmurzaev
, “
Finite element framework for describing dynamic wetting phenomena
,”
Int. J. Numer. Methods Fluids
68
,
1257
(
2012
).
6.
M.
Sussman
, “
A method for overcoming the surface tension time step constraint in multiphase flows II
,”
Int. J. Numer. Methods Fluids
68
,
1343
(
2012
).
7.
Y.
Sui
and
P. D.
Spelt
, “
An efficient computational model for macroscale simulations of moving contact lines
,”
J. Comput. Phys.
242
,
37
(
2013
).
8.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
9.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
(
1997
).
10.
R. V.
Craster
and
O. K.
Matar
, “
Dynamics and stability of thin liquid films
,”
Rev. Mod. Phys.
81
,
1131
(
2009
).
11.
R.
Goodwin
and
G. M.
Homsy
, “
Viscous flow down a slope in the vicinity of a contact line
,”
Phys. Fluids A
3
,
515
(
1991
).
12.
J.
Fowlkes
,
L.
Kondic
,
J.
Diez
,
Y.
Wu
, and
P.
Rack
, “
Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films
,”
Nano Lett.
11
,
2478
(
2011
).
13.
O.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
(
1976
).
14.
L.
Tanner
, “
Spreading of silicone oil drops on horizontal surfaces
,”
J. Phys. D
12
,
1473
(
1979
).
15.
Y.
Wu
,
J.
Fowlkes
,
P.
Rack
,
J.
Diez
, and
L.
Kondic
, “
On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: competing liquid-phase instability and transport mechanisms
,”
Langmuir
26
,
11972
(
2010
).
16.
Y.
Wu
,
J.
Fowlkes
,
N.
Roberts
,
J.
Diez
,
L.
Kondic
,
A.
González
, and
P.
Rack
, “
Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2
,”
Langmuir
27
,
13314
(
2011
).
17.
S.
Afkhami
and
L.
Kondic
, “
Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: Interplay of geometry and dewetting
,”
Phys. Rev. Lett.
111
,
034501
(
2013
).
18.
A. G.
González
,
J. A.
Diez
, and
L.
Kondic
, “
Stability of a liquid ring on a substrate
,”
J. Fluid Mech.
718
,
246
(
2013
).
19.
E. B.
Dussan
 V
, “
The moving contact line: the slip boundary condition
,”
J. Fluid Mech.
77
,
665
(
1976
).
20.
H. P.
Greenspan
, “
On the motion of a small viscous droplet that wets a surface
,”
J. Fluid Mech.
84
,
125
(
1978
).
21.
L.
Hocking
and
A.
Rivers
, “
The spreading of a drop by capillary action
,”
J. Fluid Mech.
121
,
425
(
1982
).
22.
P. J.
Haley
and
M. J.
Miksis
, “
The effect of the contact line on droplet spreading
,”
J. Fluid Mech.
223
,
57
(
1991
).
23.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
(
1971
).
24.
J.
Diez
and
L.
Kondic
, “
On the breakup of fluid films of finite and infinite extent
,”
Phys. Fluids
19
,
072107
(
2007
).
25.
J.
Brackbill
,
D.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
(
1992
).
26.
S.
Popinet
, “
An accurate adaptive solver for surface-tension-driven interfacial flows
,”
J. Comput. Phys.
228
,
5838
(
2009
).
27.
S.
Popinet
, “
The Gerris flow solver
,” http://gfs.sourceforge.net/ (
2012
), Version 1.3.2.
28.
C. A.
Perazzo
and
J.
Gratton
, “
Navier-Stokes solutions for parallel flow in rivulets on an inclined plane
,”
J. Fluid Mech.
507
,
367
(
2004
).
29.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
New York
,
1992
).
30.
L.
Schwartz
and
R.
Eley
, “
Simulation of droplet motion on low-energy and heterogeneous surfaces
,”
J. Colloid Interface Sci.
202
,
173
(
1998
).
31.
A.
Münch
and
B.
Wagner
, “
Contact-line instability of dewetting thin films
,”
Physica D
209
,
178
(
2005
).
32.
J. M.
Gomba
and
G. M.
Homsy
, “
Analytical solutions for partially wetting two-dimensional droplets
,”
Langmuir
25
,
5684
(
2009
).
33.
J.
Diez
and
L.
Kondic
, “
Computing three-dimensional thin film flows including contact lines
,”
J. Comput. Phys.
183
,
274
(
2002
).
34.
J.
Eggers
, “
Toward a description of contact line motion at higher capillary numbers
,”
Phys. Fluids
16
,
3491
(
2004
).
35.
G.
Barenblatt
,
Scaling, Self-Similarity, and Intermediate Asymptotics
(
Cambridge University Press
,
New York
,
1996
).
36.
J.
Diez
,
R.
Gratton
,
L.
Thomas
, and
B.
Marino
, “
Laplace pressure driven drop spreading
,”
Phys. Fluids
6
,
24
(
1994
).
37.
R.
Gratton
,
J. A.
Diez
,
L. P.
Thomas
,
B.
Marino
, and
S.
Betelú
, “
Quasi-self-similarity for wetting drops
,”
Phys. Rev. E
53
,
3563
(
1996
).
38.
J.
Diez
,
L.
Kondic
, and
A. L.
Bertozzi
, “
Global models for moving contact lines
,”
Phys. Rev. E
63
,
011208
(
2000
).
39.
M.
Renardy
,
Y.
Renardy
, and
J.
Li
, “
Numerical simulation of moving contact line problems using a volume-of-fluid method
,”
J. Comput. Phys.
171
,
243
(
2001
).
40.
J.
Snoeijer
, “
Free-surface flows with large slope: beyond lubrication theory
,”
Phys. Fluids
18
,
021701
(
2006
).
41.
R.
Scardovelli
and
S.
Zaleski
, “
Analytical relations connecting linear interfaces and volume fractions in rectangular grids
,”
J. Comput. Phys.
164
,
228
(
2000
).
42.
J.
Bell
,
P.
Colella
, and
H.
Glaz
, “
A second-order projection method for the incompressible Navier-Stokes equations
,”
J. Comput. Phys.
85
,
257
(
1989
).
43.
M.
Francois
,
S.
Cummins
,
E.
Dendy
,
D.
Kothe
,
J.
Sicilian
, and
M.
Williams
, “
A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework
,”
J. Comput. Phys.
213
,
141
(
2006
).
44.
S.
Afkhami
and
M.
Bussmann
, “
Height functions for applying contact angles to 2D VOF simulations
,”
Int. J. Numer. Methods Fluids
57
,
453
(
2008
).
45.
M.
Sussman
, “
A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles
,”
J. Comput. Phys.
187
,
110
(
2003
).
46.
M.
Torrey
,
L.
Cloutman
,
R.
Mjolsness
, and
C.
Hirt
, “
NASA-VOF2D: a computer program for incompressible flows with free surfaces
,” NASA STI/Recon Technical Report N (
1985
), Vol.
86
, p.
30116
.
You do not currently have access to this content.