This paper investigates the dynamic coupling between fluid sloshing and the motion of the vessel containing the fluid, for the case when the vessel is partitioned using non-porous baffles. The vessel is modelled using Cooker's sloshing configuration [M. J. Cooker, “

Water waves in a suspended container
,” Wave Motion20, 385
395
(1994)]. Cooker's configuration is extended to include n − 1 non-porous baffles which divide the vessel into n separate fluid compartments each with a characteristic length scale. The problem is analysed for arbitrary fill depth in each compartment, and it is found that a multitude of resonance situations can occur in the system, from 1 : 1 resonances to (n + 1)−fold 1 : 1: ⋯ : 1 resonances, as well as ℓ: m: ⋯ : n for natural numbers ℓ, m, n, depending upon the system parameter values. The conventional wisdom is that the principle role of baffles is to damp the fluid motion. Our results show that in fact without special consideration, the baffles can lead to enhancement of the fluid motion through resonance.

1.
H. N.
Abramson
,
W. H.
Chu
, and
L. R.
Garza
, “
Liquid sloshing in spherical tanks
,”
AIAA J.
1
(
2
),
384
389
(
1963
).
2.
H. N.
Abramson
,
The Dynamic Behavior of Liquids in Moving Containers
(
NASA SP-106
,
Washington, D. C.
,
1966
).
3.
R. A.
Ibrahim
,
Liquid Sloshing Dynamics
(
Cambridge University Press
,
Cambridge
,
2005
).
4.
O. M.
Faltinsen
and
A. N.
Timokha
,
Sloshing
(
Cambridge University Press
,
Cambridge
,
2009
).
5.
N. N.
Moiseyev
and
V. V.
Rumyantsev
,
Dynamic Stability of Bodies Containing Fluid
(
Springer-Verlag
,
New York
,
1968
).
6.
M. J.
Cooker
, “
Water waves in a suspended container
,”
Wave Motion
20
,
385
395
(
1994
).
7.
P. D.
Weidman
, “
Synchronous sloshing in free and suspended containers
,” in
APS Division of Fluid Dynamics, 47th Annual Meeting
,
Atlanta, GA
, 20–22 November
1994
.
8.
P. D.
Weidman
, “
Sloshing in suspended containers
,”
APS Division of Fluid Dynamics, 58th Annual Meeting
,
Chicago, IL
, 20–22 November
2005
.
9.
H. Alemi
Ardakani
and
T. J.
Bridges
, “
Dynamic coupling between shallow-water sloshing and horizontal vehicle motion
,”
Eur. J. Appl. Math
21
,
479
517
(
2010
).
10.
J.
Yu
, “
Effects of finite water depth on natural frequencies of suspended water tanks
,”
Stud. Appl. Math.
125
,
337
391
(
2010
).
11.
H. Alemi
Ardakani
,
T. J.
Bridges
, and
M. R.
Turner
, “
Resonance in a model for Cooker's sloshing experiment
,”
Eur. J. Mech. B/Fluids
36
,
25
38
(
2012
).
12.
H. Alemi
Ardakani
,
T. J.
Bridges
, and
M. R.
Turner
, “
Resonance in a model for Cooker's sloshing experiment—Extended version
,” Technical Report,
University of Surrey Repository
,
2012
, see http://epubs.surrey.ac.uk/713639/.
13.
Z. C.
Feng
and
P. R.
Sethna
, “
Global bifurcation and chaos in parametrically forced systems with 1 : 1 resonance
,”
Dyn. Syst.
5
,
201
225
(
1990
).
14.
I.
Hoveijn
and
O. N.
Kirillov
, “
Singularities on the boundary of the stability domain near 1 : 1-resonance
,”
J. Differ. Equations
248
,
2585
2607
(
2010
).
15.
T.
Ikeda
and
N.
Nakagawa
, “
Non-linear vibrations of a structure caused by water sloshing in a rectangular tank
,”
J. Sound Vib.
201
,
23
41
(
1997
).
16.
J. B.
Frandsen
, “
Numerical predictions of tuned liquid tank structural systems
,”
J. Fluids Struct.
20
,
309
329
(
2005
).
17.
T.
Ikeda
, “
Autoparametric resonances in elastic structures carrying two rectangular tanks partially filled with liquid
,”
J. Sound Vib.
302
,
657
682
(
2007
).
18.
Z. C.
Feng
and
P. R.
Sethna
, “
Symmetry breaking bifurcations in resonant surface waves
,”
J. Fluid Mech.
199
,
495
518
(
1989
).
19.
M. R.
Turner
and
T. J.
Bridges
, “
Nonlinear energy transfer between fluid sloshing and vessel dynamics
,”
J. Fluid Mech.
719
,
606
636
(
2013
).
20.
R. A.
Struble
and
J. H.
Heinbockel
, “
Resonant oscillations of a beam-pendulum system
,”
J. Appl. Mech.
30
(
2
),
181
188
(
1963
).
21.
A.
Skeldon
and
T.
Mullin
, “
Mode interaction in a double pendulum
,”
Phys. Lett. A
166
,
224
229
(
1992
).
22.
R.
Cushman
, “
Geometry of the bifurcations of the normalized reduced Hénon–Heiles family
,”
Proc. R. Soc. London, Ser. A
382
,
361
371
(
1982
).
23.
K.
Efstathiou
,
D.
Sadovskii
, and
R.
Cushman
, “
Linear Hamiltonian Hopf bifurcation for point-group-invariant perturbations of the 1 : 1 : 1 resonance
,”
Proc. R. Soc. London, Ser. A
459
,
2997
3019
(
2003
).
24.
K.
Efstathiou
and
D.
Sadovskii
, “
Perturbations of the 1 : 1 : 1 resonance with tetrahedral symmetry: A three degree of freedom analogue of the two degree of freedom Hénon-Heiles Hamiltonian
,”
Nonlinearity
17
,
415
446
(
2004
).
25.
K.
Efstathiou
,
R.
Cushman
, and
D.
Sadovskii
, “
Hamiltonian Hopf bifurcation of the hydrogen atom in crossed fields
,”
Physica D
194
,
250
274
(
2004
).
26.
N. J.
Fitch
,
C. A.
Weidner
,
L. P.
Parazzoli
,
H. R.
Dullin
, and
H. J.
Lewandowski
, “
Experimental demonstration of classical Hamiltonian monodromy in the 1 : 1 : 2 resonant elastic pendulum
,”
Phys. Rev. Lett.
103
,
034301
(
2009
).
27.
O.
Shoshani
and
O.
Gottlieb
, “
Nonlinear dynamics and orbital stability of a wake oscillator model for self-excited vortex-induced vibration of a spherical pendulum
,” in
Proceedings of the 7th European Nonlinear Dynamics Conference, Rome, Italy
, edited by
D.
Bernardini
,
G.
Rega
, and
F.
Romeo
(
Department of Structural and Geotechnical Engineering, Sapienza University of Rome
,
2011
).
28.
C. M.
Linton
and
P.
McIver
,
Handbook of Mathematical Techniques for Wave-Structure Interaction
(
Chapman and Hall/CRC
,
Boca Raton
,
2001
).
29.
J. P.
Boyd
,
Chebyshev and Fourier Spectral Methods
(
Dover
,
New York
,
2001
).
30.
O. M.
Faltinsen
,
O. F.
Rognebakke
, and
A. N.
Timokha
, “
Resonant three-dimensional nonlinear sloshing in a square-base basin
,”
J. Fluid Mech.
487
,
1
42
(
2003
).
31.
A.
Herczyński
and
P. D.
Weidman
, “
Experiments on the periodic oscillation of free containers driven by liquid sloshing
,”
J. Fluid Mech.
693
,
216
242
(
2012
).
You do not currently have access to this content.