The results of a combined experimental and numerical study of the flow in slowly diverging pipes are presented. Interestingly, an axisymmetric conical recirculation cell has been observed. The conditions for its existence and the length of the cell are simulated for a range of diverging angles. There is a critical velocity for the appearance of this state. When the flow rate increases further, a subcritical transition for localized turbulence arises. The transition and relaminarization experiments described here quantify the extent of turbulence. The findings suggest that the transition scenario in slowly diverging pipes is a combination of stages similar to those observed in sudden expansions and in straight circular pipe flow.
REFERENCES
1.
A.
Craya
and R.
Curtet
, “Sur l’évolution d'un jet en espace confiné
,” C. R. Acad. Sci.
241
(8
), 621
–622
(1955
).2.
A.
Nahum
and A.
Seifert
, “On the application of confined twin-jet instability to micro-mixing enhancement
,” Phys. Fluids
18
, 064107
(2006
).3.
C. Y.
Soong
, P. Y.
Tzeng
, and C. D.
Hsieh
, “Numerical investigation of flow structure and bifurcation phenomena of confined plane twin-jet flows
,” Phys. Fluids
10
(11
), 2910
–2921
(1998
).4.
M.
Hamadiche
, J.
Scott
, and D.
Jeandel
, “Temporal stability of Jeffery-Hamel flow
,” J. Fluid Mech.
268
, 71
–88
(1994
).5.
R. R.
Kerswell
, O. R.
Tutty
, and P. G.
Drazin
, “Steady nonlinear waves in diverging channel flow
,” J. Fluid Mech.
501
, 231
–250
(2004
).6.
I. J.
Sobey
and P. G.
Drazin
, “Bifurcations of two-dimensional channel flows
,” J. Fluid Mech.
171
, 263
–287
(1986
).7.
S. R.
Stow
, P. W.
Duck
, and R. E.
Hewitt
, “Three-dimensional extensions to Jeffery-Hamel flow
,” Fluid Dyn. Res.
29
, 25
–46
(2001
).8.
P. E.
Haines
, R. E.
Hewitt
, and A. L.
Hazel
, “The Jeffery-Hamel similarity solution and its relation to flow in a diverging channel
,” J. Fluid Mech.
687
, 404
–430
(2011
).9.
G.
Swaminathan
, K. C.
Sahu
, A.
Sameen
, and R.
Govindarajan
, “Global instabilities in diverging channel flows
,” Theor. Comput. Fluid Dyn.
25
, 53
–64
(2011
).10.
V.
Putkaradze
and P.
Vorobieff
, “Instabilities, bifurcations, and multiple solutions in expanding channel flows
,” Phys. Rev. Lett.
97
, 144502
(2006
).11.
F.
Durst
, A.
Melling
, and J. H.
Whitelaw
, “Low Reynolds number flow over a plane symmetric sudden expansion
,” J. Fluid Mech.
64
, 111
–128
(1974
).12.
R. M.
Fearn
, T.
Mullin
, and K. A.
Cliffe
, “Nonlinear flow phenomena in a symmetric sudden expansion
,” J. Fluid Mech.
211
, 595
–608
(1990
).13.
R. B.
Bird
, R. C.
Armstrong
, and O.
Hassager
, Dynamics of Polymeric Liquids
(John Wiley & Sons
, Hoboken
, 1987
).14.
S.
Rosa
and F. T.
Pinho
, “Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers
,” Int. J. Heat Fluid Flow
27
, 319
–328
(2006
).15.
K. R.
Sreenivasan
and P. J.
Strykowski
, “An instability associated with a sudden expansion in pipe flow
,” Phys. Fluids
26
(10
), 2766
–2768
(1983
).16.
D. J.
Latornell
and A.
Pollard
, “Some observations on the evolution of shear layer instabilities in laminar flow through axisymmetric sudden expansions
,” Phys. Fluids
29
(9
), 2828
–2835
(1986
).17.
T.
Mullin
, J. R. T.
Seddon
, M. D.
Mantle
, and A. J.
Sederman
, “Bifurcation phenomena in the flow through a sudden expansion in a circular pipe
,” Phys. Fluids
21
, 014110
(2009
).18.
C. D.
Cantwell
, D.
Barkley
, and H. M.
Blackburn
, “Transient growth analysis of flow through a sudden expansion in a circular pipe
,” Phys. Fluids
22
, 034101
(2010
).19.
E.
Sanmiguel-Rojas
, C.
del Pino
, and C.
Gutiérrez-Montez
, “Global mode analysis of a pipe flow through a 1:2 axisymmetric sudden expansion
,” Phys. Fluids
22
, 071702
(2010
).20.
K. C.
Sahu
and R.
Govindarajan
, “Stability of flow through a slowly diverging pipe
,” J. Fluid Mech.
531
, 325
–334
(2005
).21.
E. M.
Sparrow
, J. P.
Abraham
, and W. J.
Minkowycz
, “Flow separation in a diverging conical flow: Effect of Reynolds number and divergence angle
,” Int. J. Heat Mass Transfer
52
, 3079
–3083
(2009
).22.
S. J.
Sherwin
and H. M.
Blackburn
, “Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows
,” J. Fluid Mech.
333
, 297
–327
(2005
).23.
M. D.
Griffith
, T.
Leweke
, M. C.
Thompson
, and K.
Hourigan
, “Steady inlet flow in stenotic geometries: Convective and absolute instabilities
,” J. Fluid Mech.
616
, 111
–133
(2008
).24.
J.
Vétel
, A.
Gaton
, D.
Pelletier
, and M.-I.
Farinas
, “Asymmetry and transition to turbulence in a smooth axisymmetric constriction
,” J. Fluid Mech.
607
, 351
–386
(2008
).25.
A.
Meseguer
and L. N.
Trefethen
, “Linearized pipe flow to Reynolds number 107
,” J. Comput. Phys.
186
, 178
–197
(2003
).26.
N.
Abcha
, N.
Latrache
, F.
Dumouchel
, and I.
Mutabazi
, “Quantitative relation between reflected light intensity by Kalliroscope flakes and velocity field in the Taylor-Couette flow system
,” Exp. Fluids
45
, 85
–94
(2008
).27.
I. J.
Wygnanski
and F. H.
Champagne
, “On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug
,” J. Fluid Mech.
59
, 281
–335
(1973
).28.
Y.
Duguet
, A. P.
Willis
, and R. R.
Kerswell
, “Slug genesis in cylindrical pipe flow
,” J. Fluid Mech.
663
, 180
–208
(2010
).29.
H.
Schneider
, D. A.
Von Terzi
, H.-J.
Bauer
, and W.
Rodi
, “A mechanism for control of turbulent separated flow in rectangular diffusers
,” J. Fluid Mech.
687
, 584
–594
(2011
).30.
A. H.
Herbst
, P.
Schlatter
, and D. S.
Henningson
, “Simulations of turbulent flow in a plane asymmetric diffuser
,” Flow, Turbul. Combust.
79
, 275
–306
(2007
).31.
J.
Lee
, S. J.
Jang
, and H. J.
Sung
, “Direct numerical simulations of turbulent flow in a conical diffuser
,” J. Turbul.
13
(30
), 1
–29
(2012
).32.
J.
Peixinho
and T.
Mullin
, “Decay of turbulence in pipe flow
,” Phys. Rev. Lett.
96
, 094501
(2006
).33.
T.
Cubaud
and T. G.
Mason
, “Folding of viscous threads in diverging microchannels
,” Phys. Rev. Lett.
96
, 114501
(2006
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.