In this study, we investigate the applicability of the mean wall shear stress as a boundary condition for large eddy simulation of wall-bounded turbulent flow with coarse-grid resolution near the wall. We consider turbulent channel flow up to Reτ = O(108) and turbulent boundary layer flow up to Reθ = O(107). The mean wall shear stress is determined based on the log-law at every time step. It is shown that the mean wall shear stress boundary condition accurately predicts the logarithmic velocity profile and low-order turbulence statistics even with very coarse-grid spacing near the wall.
REFERENCES
1.
D. R.
Chapman
, “Computational aerodynamics development and outlook
,” AIAA J.
17
, 1293
(1979
).2.
H.
Choi
and P.
Moin
, “Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,” Phys. Fluids
24
, 011702
(2012
).3.
U.
Piomelli
and E.
Balaras
, “Wall-layer models for large-eddy simulations
,” Annu. Rev. Fluid Mech.
34
, 349
(2002
).4.
U.
Piomelli
, “Wall-layer models for large-eddy simulations
,” Prog. Aerosp. Sci.
44
, 437
(2008
).5.
P. R.
Spalart
, W.-H.
Jou
, M.
Strelets
, and S. R.
Allmaras
, “Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach
,” in Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA, 4–8 August 1997
, in Advances in DNS/LES
, edited by C.
Liu
and Z.
Liu
(Greyden
, Columbus, OH
, 1997
).6.
P. R.
Spalart
, “Detached-eddy simulation
,” Annu. Rev. Fluid Mech.
41
, 181
(2009
).7.
J. R.
Forsythe
, K. D.
Squires
, K. E.
Wurtzler
, and P. R.
Spalart
, “Detached-eddy simulation of the F-15E at high alpha
,” J. Aircr.
41
, 193
(2004
).8.
E.
Guilmineau
, G.
Deng
, and J.
Wackers
, “Numerical simulation with a DES approach for automotive flows
,” J. Fluids Struct.
27
, 807
(2011
).9.
E.
Balaras
, C.
Benocci
, and U.
Piomelli
, “Two-layer approximate boundary conditions for large-eddy simulations
,” AIAA J.
34
, 1111
(1996
).10.
W.
Cabot
and P.
Moin
, “Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow
,” Flow, Turbul. Combust.
63
, 269
(2000
).11.
M.
Wang
and P.
Moin
, “Dynamic wall modeling for large-eddy simulation of complex turbulent flows
,” Phys. Fluids
14
, 2043
(2002
).12.
S.
Kawai
and J.
Larsson
, “Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy
,” Phys. Fluids
24
, 015105
(2012
).13.
F.
Nicoud
, J. S.
Baggett
, P.
Moin
, and W.
Cabot
, “Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
,” Phys. Fluids
13
, 2968
(2001
).14.
S.
Kawai
and J.
Larsson
, “Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
,” Phys. Fluids
25
, 015105
(2013
).15.
U.
Schumann
, “Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli
,” J. Comput. Phys.
18
, 376
(1975
).16.
D.
Chung
and D. I.
Pullin
, “Large-eddy simulation and wall modelling of turbulent channel flow
,” J. Fluid Mech.
631
, 281
(2009
).17.
G.
Grötzbach
, “Direct numerical and large eddy simulation of turbulent channel flows
,” in Encyclopedia of Fluid Mechanics
, edited by N. P.
Cheremisinoff
(Gulf
, West Orange, NJ
, 1987
).18.
U.
Piomelli
, J.
Ferziger
, P.
Moin
, and J.
Kim
, “New approximate boundary conditions for large eddy simulations of wall-bounded flows
,” Phys. Fluids A
1
, 1061
(1989
).19.
E.
Balaras
, C.
Benocci
, and U.
Piomelli
, “Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model
,” Theor. Comput. Fluid Dyn.
7
, 207
(1995
).20.
M.
Germano
, U.
Piomelli
, P.
Moin
, and W. H.
Cabot
, “A dynamic subgrid-scale eddy viscosity model
,” Phys. Fluids A
3
, 1760
(1991
).21.
D. K.
Lilly
, “A proposed modification of the Germano subgrid-scale closure method
,” Phys. Fluids A
4
, 633
(1992
).22.
J.
Smagorinsky
, “General circulation experiments with the primitive equations
,” Mon. Weather Rev.
91
, 99
(1963
).23.
J. A.
Templeton
, M.
Wang
, and P.
Moin
, “An efficient wall model for large-eddy simulation based on optimal control theory
,” Phys. Fluids
18
, 025101
(2006
).24.
J. A.
Templeton
, M.
Wang
, and P.
Moin
, “A predictive wall model for large-eddy simulation based on optimal control techniques
,” Phys. Fluids
20
, 065104
(2008
).25.
M.
Inoue
and D. I.
Pullin
, “Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Reθ = O(1012)
,” J. Fluid Mech.
686
, 507
(2011
).26.
I.
Marusic
, R.
Mathis
, and N.
Hutchins
, “Predictive model for wall-bounded turbulent flow
,” Science
329
, 193
(2010
).27.
R.
Mathis
, N.
Hutchins
, and I.
Marusic
, “A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows
,” J. Fluid Mech.
681
, 537
(2011
).28.
M.
Inoue
, R.
Mathis
, I.
Marusic
, and D. I.
Pullin
, “Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations
,” Phys. Fluids
24
, 075102
(2012
).29.
C. H.
Moeng
, “A large-eddy simulation model for the study of planetary boundary-layer turbulence
,” J. Atmos. Sci.
41
, 2052
(1984
).30.
F.
Porté-Agel
, C.
Meneveau
, and M. B.
Parlange
, “A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,” J. Fluid Mech.
415
, 261
(2000
).31.
S.
Radhakrishnan
and U.
Piomelli
, “Large-eddy simulation of oscillating boundary layers: Model comparison and validation
,” J. Geophys. Res.
113
, C02022
, doi: (2008
).32.
Y.
Bentaleb
and M. A.
Leschziner
, “The structure of a spatially evolving three-dimensional boundary layer subjected to spanwise pressure gradient
,” in Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer, Palermo, Italy, 24–27 September 2012
(Begell House
, 2012
).33.
P. R.
Spalart
, R. D.
Moser
, and M. M.
Rogers
, “Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,” J. Comput. Phys.
96
, 297
(1991
).34.
J.
Lee
, H.
Choi
, and N.
Park
, “Dynamic global model for large eddy simulation of transient flow
,” Phys. Fluids
22
, 075106
(2010
).35.
N.
Park
, S.
Lee
, J.
Lee
, and H.
Choi
, “A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,” Phys. Fluids
18
, 125109
(2006
).36.
H. M.
Nagib
and K. A.
Chauhan
, “Variations of von Kármán coefficient in canonical flows
,” Phys. Fluids
20
, 101518
(2008
).37.
S.
Hoyas
and J.
Jiménez
, “Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,” Phys. Fluids
18
, 011702
(2006
).38.
T. S.
Lund
, X.
Wu
, and K. D.
Squires
, “Generation of turbulent inflow data for spatially-developing boundary layer simulations
,” J. Comput. Phys.
140
, 233
(1998
).39.
J. M.
Österlund
, “Experimental studies of zero pressure-gradient turbulent boundary-layer flow
,” Ph.D. thesis, Royal Institute of Technology
, 1999
.40.
G. F.
Oweis
, E. S.
Winkel
, J. M.
Cutbrith
, S. L.
Ceccio
, M.
Perlin
, and D. R.
Dowling
, “The mean velocity profile of a smooth-flat-plate turbulent boundary layer at high Reynolds number
,” J. Fluid Mech.
665
, 357
(2010
).41.
E. S.
Winkel
, J. M.
Cutbirth
, S. L.
Ceccio
, M.
Perlin
, and D. R.
Dowling
, “Turbulence profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number
,” Exp. Therm. Fluid Sci.
40
, 140
(2012
).42.
M. B.
Jones
, I.
Marusic
, and A. E.
Perry
, “Evolution and structure of sink-flow turbulent boundary layers
,” J. Fluid Mech.
428
, 1
(2001
).43.
D. B.
De Graaff
and J. K.
Eaton
, “Reynolds-number scaling of the flat-plate turbulent boundary layer
,” J. Fluid Mech.
422
, 319
(2000
).44.
H. M.
Nagib
, K. A.
Chauhan
, and P. A.
Monkewitz
, “Approach to an asymptotic state for zero pressure gradient turbulent boundary layer
,” Philos. Trans. R. Soc. London, Ser. A
365
, 755
(2007
).45.
M.
Cho
, J.
Lee
, and H.
Choi
, “Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation
,” Bull. Am. Phys. Soc.
57
(17
), 223
(2012
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.