In this study, we investigate the applicability of the mean wall shear stress as a boundary condition for large eddy simulation of wall-bounded turbulent flow with coarse-grid resolution near the wall. We consider turbulent channel flow up to Reτ = O(108) and turbulent boundary layer flow up to Reθ = O(107). The mean wall shear stress is determined based on the log-law at every time step. It is shown that the mean wall shear stress boundary condition accurately predicts the logarithmic velocity profile and low-order turbulence statistics even with very coarse-grid spacing near the wall.

1.
D. R.
Chapman
, “
Computational aerodynamics development and outlook
,”
AIAA J.
17
,
1293
(
1979
).
2.
H.
Choi
and
P.
Moin
, “
Grid-point requirements for large eddy simulation: Chapman's estimates revisited
,”
Phys. Fluids
24
,
011702
(
2012
).
3.
U.
Piomelli
and
E.
Balaras
, “
Wall-layer models for large-eddy simulations
,”
Annu. Rev. Fluid Mech.
34
,
349
(
2002
).
4.
U.
Piomelli
, “
Wall-layer models for large-eddy simulations
,”
Prog. Aerosp. Sci.
44
,
437
(
2008
).
5.
P. R.
Spalart
,
W.-H.
Jou
,
M.
Strelets
, and
S. R.
Allmaras
, “
Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach
,” in
Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA, 4–8 August 1997
, in
Advances in DNS/LES
, edited by
C.
Liu
and
Z.
Liu
(
Greyden
,
Columbus, OH
,
1997
).
6.
P. R.
Spalart
, “
Detached-eddy simulation
,”
Annu. Rev. Fluid Mech.
41
,
181
(
2009
).
7.
J. R.
Forsythe
,
K. D.
Squires
,
K. E.
Wurtzler
, and
P. R.
Spalart
, “
Detached-eddy simulation of the F-15E at high alpha
,”
J. Aircr.
41
,
193
(
2004
).
8.
E.
Guilmineau
,
G.
Deng
, and
J.
Wackers
, “
Numerical simulation with a DES approach for automotive flows
,”
J. Fluids Struct.
27
,
807
(
2011
).
9.
E.
Balaras
,
C.
Benocci
, and
U.
Piomelli
, “
Two-layer approximate boundary conditions for large-eddy simulations
,”
AIAA J.
34
,
1111
(
1996
).
10.
W.
Cabot
and
P.
Moin
, “
Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow
,”
Flow, Turbul. Combust.
63
,
269
(
2000
).
11.
M.
Wang
and
P.
Moin
, “
Dynamic wall modeling for large-eddy simulation of complex turbulent flows
,”
Phys. Fluids
14
,
2043
(
2002
).
12.
S.
Kawai
and
J.
Larsson
, “
Wall-modeling in large eddy simulation: Length scales, grid resolution, and accuracy
,”
Phys. Fluids
24
,
015105
(
2012
).
13.
F.
Nicoud
,
J. S.
Baggett
,
P.
Moin
, and
W.
Cabot
, “
Large eddy simulation wall-modeling based on suboptimal control theory and linear stochastic estimation
,”
Phys. Fluids
13
,
2968
(
2001
).
14.
S.
Kawai
and
J.
Larsson
, “
Dynamic non-equilibrium wall-modeling for large eddy simulation at high Reynolds numbers
,”
Phys. Fluids
25
,
015105
(
2013
).
15.
U.
Schumann
, “
Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli
,”
J. Comput. Phys.
18
,
376
(
1975
).
16.
D.
Chung
and
D. I.
Pullin
, “
Large-eddy simulation and wall modelling of turbulent channel flow
,”
J. Fluid Mech.
631
,
281
(
2009
).
17.
G.
Grötzbach
, “
Direct numerical and large eddy simulation of turbulent channel flows
,” in
Encyclopedia of Fluid Mechanics
, edited by
N. P.
Cheremisinoff
(
Gulf
,
West Orange, NJ
,
1987
).
18.
U.
Piomelli
,
J.
Ferziger
,
P.
Moin
, and
J.
Kim
, “
New approximate boundary conditions for large eddy simulations of wall-bounded flows
,”
Phys. Fluids A
1
,
1061
(
1989
).
19.
E.
Balaras
,
C.
Benocci
, and
U.
Piomelli
, “
Finite-difference computations of high Reynolds number flows using the dynamic subgrid-scale model
,”
Theor. Comput. Fluid Dyn.
7
,
207
(
1995
).
20.
M.
Germano
,
U.
Piomelli
,
P.
Moin
, and
W. H.
Cabot
, “
A dynamic subgrid-scale eddy viscosity model
,”
Phys. Fluids A
3
,
1760
(
1991
).
21.
D. K.
Lilly
, “
A proposed modification of the Germano subgrid-scale closure method
,”
Phys. Fluids A
4
,
633
(
1992
).
22.
J.
Smagorinsky
, “
General circulation experiments with the primitive equations
,”
Mon. Weather Rev.
91
,
99
(
1963
).
23.
J. A.
Templeton
,
M.
Wang
, and
P.
Moin
, “
An efficient wall model for large-eddy simulation based on optimal control theory
,”
Phys. Fluids
18
,
025101
(
2006
).
24.
J. A.
Templeton
,
M.
Wang
, and
P.
Moin
, “
A predictive wall model for large-eddy simulation based on optimal control techniques
,”
Phys. Fluids
20
,
065104
(
2008
).
25.
M.
Inoue
and
D. I.
Pullin
, “
Large-eddy simulation of the zero-pressure-gradient turbulent boundary layer up to Reθ = O(1012)
,”
J. Fluid Mech.
686
,
507
(
2011
).
26.
I.
Marusic
,
R.
Mathis
, and
N.
Hutchins
, “
Predictive model for wall-bounded turbulent flow
,”
Science
329
,
193
(
2010
).
27.
R.
Mathis
,
N.
Hutchins
, and
I.
Marusic
, “
A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows
,”
J. Fluid Mech.
681
,
537
(
2011
).
28.
M.
Inoue
,
R.
Mathis
,
I.
Marusic
, and
D. I.
Pullin
, “
Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations
,”
Phys. Fluids
24
,
075102
(
2012
).
29.
C. H.
Moeng
, “
A large-eddy simulation model for the study of planetary boundary-layer turbulence
,”
J. Atmos. Sci.
41
,
2052
(
1984
).
30.
F.
Porté-Agel
,
C.
Meneveau
, and
M. B.
Parlange
, “
A scale-dependent dynamic model for large-eddy simulation: Application to a neutral atmospheric boundary layer
,”
J. Fluid Mech.
415
,
261
(
2000
).
31.
S.
Radhakrishnan
and
U.
Piomelli
, “
Large-eddy simulation of oscillating boundary layers: Model comparison and validation
,”
J. Geophys. Res.
113
,
C02022
, doi: (
2008
).
32.
Y.
Bentaleb
and
M. A.
Leschziner
, “
The structure of a spatially evolving three-dimensional boundary layer subjected to spanwise pressure gradient
,” in
Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer, Palermo, Italy, 24–27 September 2012
(
Begell House
,
2012
).
33.
P. R.
Spalart
,
R. D.
Moser
, and
M. M.
Rogers
, “
Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,”
J. Comput. Phys.
96
,
297
(
1991
).
34.
J.
Lee
,
H.
Choi
, and
N.
Park
, “
Dynamic global model for large eddy simulation of transient flow
,”
Phys. Fluids
22
,
075106
(
2010
).
35.
N.
Park
,
S.
Lee
,
J.
Lee
, and
H.
Choi
, “
A dynamic subgrid-scale eddy viscosity model with a global model coefficient
,”
Phys. Fluids
18
,
125109
(
2006
).
36.
H. M.
Nagib
and
K. A.
Chauhan
, “
Variations of von Kármán coefficient in canonical flows
,”
Phys. Fluids
20
,
101518
(
2008
).
37.
S.
Hoyas
and
J.
Jiménez
, “
Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003
,”
Phys. Fluids
18
,
011702
(
2006
).
38.
T. S.
Lund
,
X.
Wu
, and
K. D.
Squires
, “
Generation of turbulent inflow data for spatially-developing boundary layer simulations
,”
J. Comput. Phys.
140
,
233
(
1998
).
39.
J. M.
Österlund
, “
Experimental studies of zero pressure-gradient turbulent boundary-layer flow
,” Ph.D. thesis,
Royal Institute of Technology
,
1999
.
40.
G. F.
Oweis
,
E. S.
Winkel
,
J. M.
Cutbrith
,
S. L.
Ceccio
,
M.
Perlin
, and
D. R.
Dowling
, “
The mean velocity profile of a smooth-flat-plate turbulent boundary layer at high Reynolds number
,”
J. Fluid Mech.
665
,
357
(
2010
).
41.
E. S.
Winkel
,
J. M.
Cutbirth
,
S. L.
Ceccio
,
M.
Perlin
, and
D. R.
Dowling
, “
Turbulence profiles from a smooth flat-plate turbulent boundary layer at high Reynolds number
,”
Exp. Therm. Fluid Sci.
40
,
140
(
2012
).
42.
M. B.
Jones
,
I.
Marusic
, and
A. E.
Perry
, “
Evolution and structure of sink-flow turbulent boundary layers
,”
J. Fluid Mech.
428
,
1
(
2001
).
43.
D. B.
De Graaff
and
J. K.
Eaton
, “
Reynolds-number scaling of the flat-plate turbulent boundary layer
,”
J. Fluid Mech.
422
,
319
(
2000
).
44.
H. M.
Nagib
,
K. A.
Chauhan
, and
P. A.
Monkewitz
, “
Approach to an asymptotic state for zero pressure gradient turbulent boundary layer
,”
Philos. Trans. R. Soc. London, Ser. A
365
,
755
(
2007
).
45.
M.
Cho
,
J.
Lee
, and
H.
Choi
, “
Application of mean wall shear stress boundary condition to complex turbulent flows using a wall-modeled large eddy simulation
,”
Bull. Am. Phys. Soc.
57
(
17
),
223
(
2012
).
You do not currently have access to this content.