A modification to existing phenomenological inelastic collision selection procedures suitable for modeling the internal energy exchange processes of gas mixtures in direct simulation Monte Carlo calculations is presented. The selection procedure does not depend on the relative order of rotational and vibrational relaxation processes and does not require the solution of a quadratic equation for every collision to determine the inelastic collision probability. The simulated relaxation process resulting from the selection procedure is analytically proven to be equivalent to the procedures of Haas et al. [“Rates of thermal relaxation in direct simulation Monte Carlo methods,” Phys. Fluids6, 21912201 (1994)] and the modified procedure of Gimelshein et al. [“Vibrational relaxation rates in the direct simulation Monte Carlo method,” Phys. Fluids14, 44524455 (2002)]. The implementation and computational efficiency of each of the procedures are discussed. The proposed selection procedure is verified to accurately simulate rotational and vibrational processes for gas mixtures through isothermal relaxation simulations compared with analytical solutions using the Jeans equation.

1.
B. L.
Haas
,
D. B.
Hash
,
G. A.
Bird
,
F. E.
Lumpkin
, and
H. A.
Hassan
, “
Rates of thermal relaxation in direct simulation Monte Carlo methods
,”
Phys. Fluids
6
,
2191
2201
(
1994
).
2.
N. E.
Gimelshein
,
S. F.
Gimelshein
, and
D. A.
Levin
, “
Vibrational relaxation rates in the direct simulation Monte Carlo method
,”
Phys. Fluids
14
,
4452
4455
(
2002
).
3.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
(
Oxford University Press
,
Oxford, UK
,
1994
).
4.
S.
Dietrich
and
I. D.
Boyd
, “
Scalar and parallel optimized implementation of the direct simulation Monte Carlo method
,”
J. Comput. Phys.
126
,
328
342
(
1996
).
5.
I. D.
Boyd
, “
Rotational-translational energy transfer in rarefied nonequilibrium flows
,”
Phys. Fluids A
2
,
447
552
(
1990
).
6.
F. E.
Lumpkin
,
B. L.
Haas
, and
I. D.
Boyd
, “
Resolution of differences between collision number definitions in particle and continuum simulations
,”
Phys. Fluids A
3
,
2282
2284
(
1991
).
7.
J. G.
Parker
, “
Rotational and vibrational relaxation in diatomic gases
,”
Phys. Fluids
2
,
449
462
(
1959
).
8.
R. C.
Millikan
and
D. R.
White
, “
Systematics of vibrational relaxation
,”
J. Chem. Phys.
39
,
3209
3213
(
1963
).
9.
F.
Bergemann
and
I. D.
Boyd
, “
New discrete vibrational energy model for the direct simulation Monte Carlo method
,” in
Rarefied Gas Dynamics: Experimental Techniques and Physical Systems
(
AIAA
,
1994
).
10.
C.
Borgnakke
and
P. S.
Larsen
, “
Statistical collision model for Monte Carlo simulation of polyatomic gas mixture
,”
J. Comput. Phys.
18
,
405
420
(
1975
).
11.
I. D.
Boyd
, “
Analysis of rotational nonequilibrium in standing shock waves of nitrogen
,”
AIAA J.
28
,
1997
1999
(
1990
).
12.
I.
Choquet
, “
Thermal nonequilibrium modelling using the direct simulation Monte Carlo method: Application to rotational energy
,”
Phys. Fluids
6
,
4042
4053
(
1994
).
13.
I. J.
Wysong
and
D. C.
Wadsworth
, “
Assessment of direct simulation Monte Carlo phenomenological rotational relaxation models
,”
Phys. Fluids
10
,
2983
2994
(
1998
).
14.
I. D.
Boyd
, “
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
,”
Phys. Fluids A
3
,
1785
1971
(
1991
).
15.
P.
Vijayakumar
,
Q.
Sun
, and
I. D.
Boyd
, “
Vibrational-translational energy exchange models for the direct simulation Monte Carlo method
,”
Phys. Fluids
11
,
2117
2126
(
1999
).
16.
C.
Zhang
,
P.
Valentini
, and
T. E.
Schwartzentruber
, “
Nonequilibrium-direction-dependent rotational energy model for use in continuum and stochastic molecular simulation
,”
AIAA J.
(in press).
17.
I. D.
Boyd
and
E.
Josyula
, “
State resolved vibrational relaxation modelling for strongly nonequilibrium flows
,”
Phys. Fluids
23
,
057101
(
2011
).
You do not currently have access to this content.