Drag reduction effects by a spanwise traveling wave of wall deformation in a turbulent channel flow are investigated by means of direct numerical simulation. The flow rate is kept constant at the bulk Reynolds number of Reb = 5600. A parametric study is performed by varying three parameters of the wave (i.e., the amplitude, the wavenumber, and the phase speed). Within the range of parameters investigated, the maximum drag reduction rate and the maximum net energy saving rate are found to be 13.4% and 12.2%, respectively. The drag reduction rate is found to be reasonably scaled by a product of the magnitude of the induced velocity and the thickness of the Stokes layer. An analysis using the FIK identity [K. Fukagata, K. Iwamoto, and N. Kasagi, “Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows,” Phys. Fluids14, L73 (2002)] with a three-component decomposition reveals that the drag reduction is mainly attributed to a decrease in the random component of the Reynolds shear stress. The turbulence statistics are investigated in detail and the drag reduction mechanism is explained by the induced spanwise flow due to the traveling wave rather than the riblet-like geometric structure. Although the amount of drag reduction rate is comparable to that of the conventional riblets, the quasi-streamwise vortices are found to be suppressed even when the spanwise wavelength is larger than the typical diameter of quasi-streamwise vortices.

1.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Direct numerical simulation of turbulent channel flow over the riblets
,”
J. Fluid Mech.
255
,
503
(
1993
).
2.
O. A.
El-Samni
,
H. H.
Chun
, and
H. S.
Yoon
, “
Drag reduction of turbulent flow over thin rectangular riblets
,”
Int. J. Eng. Sci.
45
,
436
(
2007
).
3.
Y.
Peet
and
P.
Sagaut
, “
Theoretical prediction of turbulent skin friction on geometrically complex surfaces
,”
Phys. Fluids
21
,
105105
(
2009
).
4.
M. J.
Walsh
, “
Riblets
,” in
Viscous Drag Reduction in Boundary Layers
, edited by
D. M.
Bushnell
and
J. N.
Heffner
(
AIAA
,
Washington, DC
,
1990
), Vol.
203
.
5.
Y.
Suzuki
and
N.
Kasagi
, “
Turbulent drag reduction mechanism above a riblet surface
,”
AIAA J.
32
,
1781
(
1994
).
6.
D. W.
Bechert
,
M.
Bruse
,
W.
Hage
,
J. G. T.
van der Hoeven
, and
G.
Hoppe
, “
Experiments on drag-reducing surfaces and their optimization with adjustable geometry
,”
J. Fluid Mech.
338
,
59
(
1997
).
7.
P.
Luchini
,
F.
Manzo
, and
A.
Pozzi
, “
Resistance of a grooved surface to parallel flow and cross-flow
,”
J. Fluid Mech.
228
,
87
(
1991
).
8.
R.
García-Mayoral
and
J.
Jiménez
, “
Drag reduction by riblets
,”
Philos. Trans. R. Soc. London, Ser. A
369
,
1412
(
2011
).
9.
Y.
Du
and
G. E.
Karniadakis
, “
Suppressing wall turbulence by means of a transverse traveling wave
,”
Science
288
,
1230
(
2000
).
10.
Y.
Du
,
V.
Symeoni
, and
G. E.
Karniadakis
, “
Drag reduction in wall-bounded turbulence via a transverse traveling wave
,”
J. Fluid Mech.
457
,
1
(
2002
).
11.
H.
Choi
,
P.
Moin
, and
J.
Kim
, “
Active turbulence control for drag reduction in wall-bounded flows
,”
J. Fluid Mech.
262
,
75
(
1994
).
12.
T.
Min
,
S. M.
Kang
,
J. L.
Speyer
, and
J.
Kim
, “
Sustained sub-laminar drag in a fully developed channel flow
,”
J. Fluid Mech.
558
,
309
(
2006
).
13.
C.
Lee
,
T.
Min
, and
J.
Kim
, “
Stability of a channel flow subject to wall blowing and suction in the form of a traveling wave
,”
Phys. Fluids
20
,
101513
(
2008
).
14.
M.
Quadrio
, “
Drag reduction in turbulent boundary layers by in-plane wall motion
,”
Philos. Trans. R. Soc. London, Ser. A
396
,
1428
(
2011
).
15.
W. J.
Jung
,
N.
Mangiavacchi
, and
R.
Akhavan
, “
Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations
,”
Phys. Fluids A
4
,
1605
(
1992
).
16.
P.
Ricco
and
M.
Quadrio
, “
Wall-oscillation conditions for drag reduction in turbulent channel flow
,”
Int. J. Heat Fluid Flow
29
,
891
(
2008
).
17.
M.
Quadrio
and
P.
Ricco
, “
Critical assessment of turbulent drag reduction through spanwise wall oscillations
,”
J. Fluid Mech.
521
,
251
(
2004
).
18.
E.
Touber
and
M.
Leschziner
, “
Near-wall streak modification by spanwise oscillatory wall motion and drag-reduction mechanisms
,”
J. Fluid Mech.
693
,
150
(
2012
).
19.
C.
Viotti
,
M.
Quadrio
, and
P.
Luchini
, “
Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction
,”
Phys. Fluids
21
,
115109
(
2009
).
20.
M.
Quadrio
,
P.
Ricco
, and
C.
Viotti
, “
Streamwise-traveling waves of spanwise wall velocity for turbulent drag reduciton
,”
J. Fluid Mech.
627
,
161
(
2009
).
21.
H.
Zhao
,
J.-Z.
Wu
, and
J.-S.
Luo
, “
Turbulent drag reduciton by traveling wave of flexible wall
,”
Fluid Dyn. Res.
34
,
175
(
2004
).
22.
Y.
Mito
and
N.
Kasagi
, “
DNS study of turbulence modification with streamwise-uniform sinusoidal wall-oscillation
,”
Int. J. Heat Fluid Flow
19
,
470
(
1998
).
23.
T.
Endo
,
N.
Kasagi
, and
Y.
Suzuki
, “
Feedback control of wall turbulence with wall deformation
,”
Int. J. Heat Fluid Flow
21
,
568
(
2000
).
24.
S.
Kang
and
H.
Choi
, “
Active wall motions for skin-friction drag reduction
,”
Phys. Fluids
12
,
3301
(
2000
).
25.
R.
Nakanishi
,
H.
Mamori
, and
K.
Fukagata
, “
Relaminarization of turbulent flow using traveling wave-like wall deformation
,”
Int. J. Heat Fluid Flow
35
,
152
(
2012
).
26.
M.
Itoh
,
S.
Tamano
,
K.
Yokota
, and
S.
Taniguchi
, “
Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion
,”
J. Turbul.
7
,
N27
(
2006
).
27.
S.
Tamano
and
M.
Itoh
, “
Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation
,”
J. Turbul.
13
,
N9
(
2012
).
28.
S.
Klumpp
,
M.
Meinke
, and
W.
Schröder
, “
Drag reduction by spanwise transversal surface wave
,”
J. Turbul.
11
,
N22
(
2010
).
29.
S.
Klumpp
,
M.
Meinke
, and
W.
Schröder
, “
Friction drag variation via spanwise transversal surface waves
,”
Flow, Turbul. Combust.
87
,
33
(
2011
).
30.
K.
Fukagata
,
N.
Kasagi
, and
P.
Koumoutsakos
, “
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
,”
Phys. Fluids
18
,
051703
(
2006
).
31.
T.
Kajishima
, “
Finite-difference method for convective terms using non-uniform grid
,”
Trans. JSME B
65
,
1607
(
1999
).
32.
F. E.
Ham
,
F. S.
Lien
, and
A. B.
Strong
, “
A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids
,”
J. Comput. Phys.
177
,
117
(
2002
).
33.
A. A.
Wray
, “
Minimal storage time-advancement schemes for spectral methods
,”
NASA Ames Research Center
, California, Report No. M.S. 202 A-1,
1990
(unpublished).
34.
P. R.
Spalart
,
R. D.
Moser
, and
M. M.
Rogers
, “
Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions
,”
J. Comput. Phys.
96
,
297
(
1991
).
35.
A. A.
Amsden
and
F. H.
Harlow
, “
A simplified MAC technique for incompressible fluid flow calculations
,”
J. Comput. Phys.
6
,
322
(
1970
).
36.
R. D.
Moser
,
J.
Kim
, and
N. N.
Mansour
, “
Direct numerical simulation of turbulent channel flow up to Reτ = 590
,”
Phys. Fluids
11
,
943
(
1999
).
37.
A. K. M. F.
Hussain
and
W. C.
Reynolds
, “
The mechanics of an organized wave in turbulent shear flow
,”
J. Fluid Mech.
41
,
241
(
1970
).
38.
J.-I.
Choi
,
C.-X.
Xu
, and
H. J.
Sung
, “
Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows
,”
AIAA J.
40
,
842
(
2002
).
39.
H.
Mamori
,
K.
Fukagata
, and
J.
Hœpffner
, “
Phase relationship in laminar channel flow controlled by traveling-wave-like blowing or suction
,”
Phys. Rev. E
81
,
046304
(
2010
).
40.
K.
Fukagata
,
K.
Sugiyama
, and
N.
Kasagi
, “
On the lower bound of net driving power in controlled duct flows
,”
Physica D
238
,
1082
(
2009
).
41.
J.
Xu
,
M.
Maxey
, and
G. E.
Karniadakis
, “
Turbulent drag reduction by constant near-wall forcing
,”
J. Fluid Mech.
582
,
79
(
2007
).
42.
A.
Yakeno
,
Y.
Hasegawa
, and
N.
Kasagi
, “
Mechanism of drag reduction by pre-determined spatio-temporally periodic control of wall turbulence
,”
Trans. JSME B
76
,
555
(
2010
).
43.
K.
Fukagata
,
K.
Iwamoto
, and
N.
Kasagi
, “
Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
,”
Phys. Fluids
14
,
L73
(
2002
).
44.
J.
Hœpffner
and
K.
Fukagata
, “
Pumping or drag reduction?
,”
J. Fluid Mech.
635
,
171
(
2009
).
45.
N.
Kasagi
,
Y.
Sumitani
,
Y.
Suzuki
, and
O.
Iida
, “
Kinematics of the quasi-coherent vortical structure in near-wall turbulence
,”
Int. J. Heat Fluid Flow
16
,
2
(
1995
).
You do not currently have access to this content.