Small quantities of liquid in a granular material control the flow dynamics as well as the triggering and jamming phases. In order to study this problem, some experimental collapse tests conducted in a rectangular box were reproduced with a 1:1 scale numerical model using the Discrete Element Method. In simulations the effect of the capillary bridges has been investigated implementing a mid-range attractive force between particles based on the minimum energy approach. Also a bonding-debonding mechanism was incorporated in the algorithm and the volume of each sessile drop on the particle surface was considered during its motion. The influence of some variables was investigated with respect to the final slope profiles and the runout lengths: the initial liquid content, the particle size, the solid density, the liquid surface tension, and the liquid-solid contact angle. Also the crucial effect of the confinement walls on the collapse phenomenon was investigated: wet particles adhere to the lateral walls providing a higher flow resistance in comparison to the same material in dry conditions. It was observed that particles with largest path-lengths are localized near the movable wall at a middle-height of the initial column sample. Other particles at the surface moves in a rigid way especially if they were wet and with a low solid density. The “fidelity” of each particle with respect to the nearest neighbours was evaluated allowing to recognize the emergence of clusters of particles and rigid parts, to extract the failure surface and to localize where debonding mechanisms concentrate in the wet case.

1.
D. J.
Hornbaker
,
R.
Albert
,
I.
Albert
,
A.-L.
Barabasi
, and
P.
Schiffer
, “
What keeps sandcastles standing?
Nature (London)
387
,
765
(
1997
).
2.
A.
Kudrolli
, “
Granular matter: Sticky sand
,”
Nature Mater.
7
,
174
175
(
2008
).
3.
S.
Nowak
,
A.
Samadani
, and
A.
Kudrolli
, “
Maximum angle of stability of a wet granular pile
,”
Nat. Phys.
1
,
50
52
(
2005
).
4.
M.
Pakpour
,
M.
Habibi
,
P.
Møller
, and
D.
Bonn
, “
How to construct the perfect sandcastle
,”
Sci. Rep.
2
,
549
(
2012
).
5.
D. M.
Newitt
and
J. M.
Conway-Jones
, “
A contribution to the theory and practice of granulation
,”
Trans. Inst. Chem. Eng.
36
,
422
442
(
1958
).
6.
S.
Ouaguenouni
and
J.-N.
Roux
, “
Compaction of well-coordinated lubricated granular pilings
,”
Europhys. Lett.
32
,
449
453
(
1995
).
7.
O.
Pitois
,
P.
Moucheront
, and
X.
Chateau
, “
Liquid bridge between two moving spheres: An experimental study of viscosity effects
,”
J. Colloid Interface Sci.
231
,
26
31
(
2000
).
8.
J. C.
Martin
and
W. J.
Moyce
, “
Part IV: An experimental study of the collapse of liquid columns on a rigid horizontal plane
,”
Philos. Trans. R. Soc. London
244
,
312
324
(
1952
).
9.
G.
Lube
,
H. E.
Huppert
,
R. S. J.
Sparks
, and
M. A.
Hallworth
, “
Axisymmetric collapses of granular columns
,”
J. Fluid Mech.
508
,
175
199
(
2004
).
10.
E.
Lajeunesse
,
A.
Mangeney-Castelnau
, and
J. A.
Vilotte
, “
Spreading of a granular mass on a horizontal plane
,”
Phys. Fluids
16
,
2371
2381
(
2004
).
11.
G.
Lube
,
H.
Huppert
,
R.
Sparks
, and
A.
Freundt
, “
Collapses of two-dimensional granular columns
,”
Phys. Rev. E
72
,
041301
(
2005
).
12.
S.
Siavoshi
and
A.
Kudrolli
, “
Failure of a granular step
,”
Phys. Rev. E
71
,
051302
(
2005
).
13.
E.
Lajeunesse
,
J.
Monnier
, and
G.
Homsy
, “
Granular slumping on a horizontal surface
,”
Phys. Fluids
17
,
103302
(
2005
).
14.
N.
Balmforth
and
R.
Kerswell
, “
Granular collapse in two dimensions
,”
J. Fluid Mech.
538
,
399
428
(
2005
).
15.
L.
Rondon
,
O.
Pouliquen
, and
P.
Aussillous
, “
Granular collapse in a fluid: Role of the initial volume fraction
,”
Phys. Fluids
23
,
073301
(
2011
).
16.
V.
Topin
,
Y.
Monerie
,
F.
Perales
, and
F.
Radjaï
, “
Collapse dynamics and runout of dense granular materials in a fluid
,”
Phys. Rev. Lett.
109
,
188001
(
2012
).
17.
L.
Staron
and
E. J.
Hinch
, “
Study of the collapse of granular columns using two-dimensional discrete-grain simulation
,”
J. Fluid Mech.
545
,
1
27
(
2005
).
18.
E.
Larrieu
,
L.
Staron
, and
E.
Hinch
, “
Raining into shallow water as a description of the collapse of a column of grains
,”
J. Fluid Mech.
554
,
259
(
2006
).
19.
L.
Lacaze
and
R. R.
Kerswell
, “
Axisymmetric granular collapse: A transient 3D flow test of viscoplasticity
,”
Phys. Rev. Lett.
102
,
108305
(
2009
).
20.
P.-Y.
Lagre
,
L.
Staron
, and
S.
Popinet
, “
The granular column collapse as a continuum: Validity of a two-dimensional NavierStokes model with a μ(I)-rheology
,”
J. Fluid Mech.
686
,
378
(
2011
).
21.
L.
Girolami
,
V.
Hergault
,
G.
Vinay
, and
A.
Wachs
, “
A three-dimensional discrete-grain model for the simulation of dam-break rectangular collapses: Comparison between numerical results and experiments
,”
Granular Matter
14
,
381
392
(
2012
).
22.
S. B.
Savage
and
K.
Hutter
, “
The motion of a finite mass of granular material down a rough incline
,”
J. Fluid Mech.
199
,
177
(
1989
).
23.
B.
Pitman
,
C.
Nichita
,
A.
Patra
,
A.
Bauer
,
M.
Sheridan
, and
M.
Bursik
, “
Computing granular avalanches and landslides
,”
Phys. Fluids
15
,
3638
3646
(
2003
).
24.
R.
Kerswell
, “
Dam break with Coulomb friction: A model for granular slumping?
,”
Phys. Fluids
17
,
057101
(
2005
).
25.
E.
Doyle
,
H.
Huppert
,
G.
Lube
,
H.
Mader
, and
R.
Sparks
, “
Static and flowing regions in granular collapses down channels: Insights from a sedimenting shallow water model
,”
Phys. Fluids
19
,
106601
(
2007
).
26.
G. B.
Crosta
,
S.
Imposimato
, and
D.
Roddeman
, “
Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface
,”
J. Geophys. Res. [Earth Surface]
114
,
F03020
, doi: (
2009
).
27.
G.
Lian
,
C.
Thornton
, and
M.
Adams
, “
A theoretical study of the liquid bridge force between rigid spherical bodies
,”
J. Colloid Interface Sci.
161
,
138
147
(
1993
).
28.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 2nd ed. (
Academic Press
,
London
,
1991
), p.
xxi
.
29.
C. D.
Willett
,
S. A.
Johnson
,
M. J.
Adams
, and
J. P.
Seville
, “
Chapter 28: Pendular capillary bridges
,”
Granulation
,
Handbook of Powder Technology
Vol.
11
, edited by
M. H. A. D.
Salman
and
J.
Seville
(
Elsevier Science B.V.
,
2007
), pp.
1317
1351
.
30.
Y. I.
Rabinovich
,
M. S.
Esayanur
, and
B. M.
Moudgil
, “
Capillary forces between two spheres with a fixed volume liquid bridge: Theory and experiment
,”
Langmuir
21
,
10992
10997
(
2005
).
31.
P.
Lambert
,
A.
Chau
,
A.
Delchambre
, and
S.
Regnier
, “
Comparison between two capillary forces models
,”
Langmuir
24
,
3157
3163
(
2008
).
32.
R. A.
Fisher
, “
On the capillary forces in an ideal soil; correction of formulae given by W. B. Haines
,”
J. Agric. Sci.
16
,
492
505
(
1926
).
33.
F.
Soulié
,
F.
Cherblanc
,
M.
El Youssoufi
, and
C.
Saix
, “
Influence of liquid bridges on the mechanical behaviour of polydisperse granular materials
,”
Int. J. Numer. Analyt. Meth. Geomech.
30
,
213
228
(
2006
).
34.
V.
Richefeu
,
M. S.
El Youssoufi
,
R.
Peyroux
, and
F.
Radjaï
, “
A model of capillary cohesion for numerical simulations of 3d polydisperse granular media
,”
Int. J. Numer. Analyt. Meth. Geomech.
32
,
1365
1383
(
2008
).
35.
C. D.
Willett
,
M. J.
Adams
,
S. A.
Johnson
, and
J. P. K.
Seville
, “
Capillary bridges between two spherical bodies
,”
Langmuir
16
,
9396
9405
(
2000
).
36.
F.
Gabrieli
,
P.
Lambert
,
S.
Cola
, and
F.
Calvetti
, “
Micromechanical modelling of erosion due to evaporation in a partially wet granular slope
,”
Int. J. Numer. Analyt. Meth. Geomech.
36
,
918
943
(
2012
).
37.
A.
Faghri
and
Y.
Zhang
, “
Numerical simulation of condensation on a capillary grooved structure
,”
Numer. Heat Transfer, Part A
39
,
227
243
(
2001
).
38.
E.
Shahraeeni
and
D.
Or
, “
Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography
,”
Phys. Rev. E
85
,
016317
(
2012
).
39.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
,
47
65
(
1979
).
40.
L.
Scholtes
,
P.-Y.
Hicher
,
F.
Nicot
,
B.
Chareyre
, and
F.
Darve
, “
On the capillary stress tensor in wet granular materials
,”
Int. J. Numer. Analyt. Meth. Geomech.
33
,
1289
1313
(
2009
).
41.
R.
Artoni
,
F.
Gabrieli
,
A.
Santomaso
, and
S.
Cola
, “
Effect of the pendular state on the collapse of granular columns
,”
Discrete Element Modelling of Particulate Media
(
The Royal Society of Chemistry
,
2012
), pp.
95
102
.
42.
R.
Artoni
,
A. C.
Santomaso
,
F.
Gabrieli
,
D.
Tono
, and
S.
Cola
, “
Collapse of quasi-two-dimensional wet granular columns
,”
Phys. Rev. E
87
,
032205
(
2013
).
43.
H.-T.
Chou
and
C.-F.
Lee
, “
Falling process of a rectangular granular step
,”
Granular Matter
13
,
39
51
(
2011
).
44.
V.
Richefeu
,
M. S.
El Youssoufi
, and
F.
Radjaï
, “
Shear strength properties of wet granular materials
,”
Phys. Rev. E
73
,
051304
(
2006
).
45.
P.
Lambert
, “
A contribution to microassembly: A study of capillary forces as a gripping principle
,” Ph.D. thesis (
Universit libre de Bruxelles
, Belgium,
2004
).
You do not currently have access to this content.