This work investigates the onset of wetting failure for displacement of Newtonian fluids in parallel channels. A hydrodynamic model is developed for planar geometries where an advancing fluid displaces a receding fluid along a moving substrate. The model is evaluated with three distinct approaches: (i) the low-speed asymptotic theory of Cox [J. Fluid Mech.168, 169194 (1986)], (ii) a one-dimensional (1D) lubrication approach, and (iii) a two-dimensional (2D) flow model solved with the Galerkin finite element method (FEM). Approaches (ii) and (iii) predict the onset of wetting failure at a critical capillary number Cacrit, which coincides with a turning point in the steady-state solution family for a given set of system parameters. The 1D model fails to accurately describe interface shapes near the three-phase contact line when air is the receding fluid, producing large errors in estimates of Cacrit for these systems. Analysis of the 2D flow solution reveals that strong pressure gradients are needed to pump the receding fluid away from the contact line. A mechanism is proposed in which wetting failure results when capillary forces can no longer support the pressure gradients necessary to steadily displace the receding fluid. The effects of viscosity ratio, substrate wettability, and fluid inertia are then investigated through comparisons of Cacrit values and characteristics of the interface shape. Surprisingly, the low-speed asymptotic theory (i) matches trends computed from (iii) throughout the entire investigated parameter space. Furthermore, predictions of Cacrit from the 2D flow model compare favorably to values measured in experimental air-entrainment studies, supporting the proposed wetting-failure mechanism.

1.
M. G.
Gerritsen
and
L. J.
Durlofsky
, “
Modeling fluid flow in oil reservoirs
,”
Annu. Rev. Fluid Mech.
37
,
211
238
(
2005
).
2.
H. A.
Stone
,
A. D.
Stroock
, and
A.
Ajdari
, “
Engineering flows in small devices: Microfluidics toward a lab-on-a-chip
,”
Annu. Rev. Fluid Mech.
36
,
381
411
(
2004
).
3.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
4.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
805
(
2009
).
5.
J. H.
Snoeijer
and
B.
Andreotti
, “
Moving contact lines: Scales, regimes, and dynamical transitions
,”
Annu. Rev. Fluid Mech.
45
,
269
292
(
2013
).
6.
T. D.
Blake
and
K. J.
Ruschak
, “
Wetting: Static and dynamic contact lines
,” in
Liquid Film Coating
, edited by
S. F.
Kistler
and
P. M.
Schweizer
(
Chapman & Hall
,
London
,
1997
), pp.
63
97
.
7.
M.
Yamamura
, “
Assisted dynamic wetting in liquid coatings
,”
Colloids Surf., A
311
,
55
60
(
2007
).
8.
E.
Vandre
,
M. S.
Carvalho
, and
S.
Kumar
, “
Delaying the onset of dynamic wetting failure through meniscus confinement
,”
J. Fluid Mech.
707
,
496
520
(
2012
).
9.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
10.
J.
Eggers
, “
Existence of receding and advancing contact lines
,”
Phys. Fluids
17
,
082106
(
2005
).
11.
J. G.
Petrov
,
J.
Ralston
,
M.
Schneemilch
, and
R. A.
Hayes
, “
Dynamics of partial wetting and dewetting in well-defined systems
,”
J. Phys. Chem. B
107
,
1634
1645
(
2003
).
12.
M. C. T.
Wilson
,
J. L.
Summers
,
Y. D.
Shikhmurzaev
,
A.
Clarke
, and
T. D.
Blake
, “
Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment
,”
Phys. Rev. E
73
,
041606
(
2006
).
13.
J. H.
Snoeijer
and
B.
Andreotti
, “
A microscopic view on contact angle selection
,”
Phys. Fluids
20
,
057101
(
2008
).
14.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
194
(
1986
).
15.
L. M.
Hocking
, “
The spreading of a drop by capillary action
,”
J. Fluid Mech.
121
,
425
442
(
1982
).
16.
E. B.
Dussan V.
,
E.
Ramé
, and
S.
Garoff
, “
On identifying the appropriate boundary conditions at a moving contact line: An experimental investigation
,”
J. Fluid Mech.
230
,
97
116
(
1991
).
17.
P. G.
Petrov
and
J. G.
Petrov
, “
A combined molecular-hydrodynamic approach to wetting kinetics
,”
Langmuir
8
,
1762
1767
(
1992
).
18.
T. D.
Blake
, “
The physics of moving wetting lines
,”
J. Colloid Interface Sci.
299
,
1
13
(
2006
).
19.
S. F.
Kistler
, “
Hydrodynamics of wetting
,” in
Wettability
, edited by
J. C.
Berg
(
Marcel Dekker, Inc.
,
New York
,
1993
), pp.
311
429
.
20.
Y.
Sui
and
P. D. M.
Spelt
, “
Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation
,”
J. Fluid Mech.
715
,
283
313
(
2013
).
21.
O. V.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
721
(
1976
).
22.
J.
Eggers
, “
Toward a description of contact line motion at higher capillary numbers
,”
Phys. Fluids
16
,
3491
3494
(
2004
).
23.
M.
Zhou
and
P.
Sheng
, “
Dynamics of immiscible-fluid displacement in a capillary tube
,”
Phys. Rev. Lett.
64
,
882
885
(
1990
).
24.
M.
Fermigier
and
P.
Jenffer
, “
An experimental investigation of the dynamic contact angle in liquid-liquid systems
,”
J. Colloid Interface Sci.
146
,
226
241
(
1991
).
25.
Q.
Chen
,
E.
Rame
, and
S.
Garoff
, “
The breakdown of asymptotic hydrodynamic models of liquid spreading at increasing capillary numbers
,”
Phys. Fluids
7
,
2631
2639
(
1995
).
26.
E.
Ramé
,
S.
Garoff
, and
K. R.
Willson
, “
Characterizing the microscopic physics near moving contact lines using dynamic contact angle data
,”
Phys. Rev. E
70
,
031608
(
2004
).
27.
A.
Oron
,
S. H.
Davis
, and
S. G.
Bankoff
, “
Long-scale evolution of thin liquid films
,”
Rev. Mod. Phys.
69
,
931
980
(
1997
).
28.
R.
Krechetnikov
, “
On application of lubrication approximations to nonunidirectional coating flows with clean and surfactant interfaces
,”
Phys. Fluids
22
,
092102
(
2010
).
29.
D.
Jacqmin
, “
Onset of wetting failure in liquid-liquid systems
,”
J. Fluid Mech.
517
,
209
228
(
2004
).
30.
M.
Sbragaglia
,
K.
Sugiyama
, and
L.
Biferale
, “
Wetting failure and contact line dynamics in a couette flow
,”
J. Fluid Mech.
614
,
471
493
(
2008
).
31.
J. H.
Snoeijer
, “
Free-surface flows with large slopes: Beyond lubrication theory
,”
Phys. Fluids
18
,
021701
(
2006
).
32.
E.
Vandre
, “
Onset of dynamic wetting failure: The mechanics of high-speed fluid displacement
,” Ph.D. thesis (
University of Minnesota
,
2013
).
33.
K. N.
Christodoulou
,
S. F.
Kistler
, and
P. R.
Schunk
, “
Advances in computational methods for free-surface flows
,” in
Liquid Film Coating
, edited by
S. F.
Kistler
and
P. M.
Schweizer
(
Chapman & Hall
,
London
,
1997
), pp.
297
367
.
34.
J.
Nam
and
M. S.
Carvalho
, “
Mid-gap invasion in two-layer slot coating
,”
J. Fluid Mech.
631
,
397
417
(
2009
).
35.
K. N.
Christodoulou
and
L. E.
Scriven
, “
Discretization of free surface flows and other moving boundary problems
,”
J. Comput. Phys.
99
,
39
55
(
1992
).
36.
J. E.
Sprittles
and
Y. D.
Shikhmurzaev
, “
Finite element framework for describing dynamic wetting phenomena
,”
Int. J. Numer. Methods Fluids
68
,
1257
1298
(
2012
).
37.
J. H.
Snoeijer
,
B.
Andreotti
,
G.
Delon
, and
M.
Fermigier
, “
Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation
,”
J. Fluid Mech.
579
,
63
83
(
2007
).
38.
L. M.
Hocking
, “
Meniscus draw-up and draining
,”
Eur. J. Appl. Math.
12
,
195
208
(
2001
).
39.
J.
Eggers
, “
Hydrodynamic theory of forced dewetting
,”
Phys. Rev. Lett.
93
,
094502
(
2004
).
40.
T. S.
Chan
,
T.
Gueudré
, and
J. H.
Snoeijer
, “
Maximum speed of dewetting on a fiber
,”
Phys. Fluids
23
,
112103
(
2011
).
41.
T. S.
Chan
,
J. H.
Snoeijer
, and
J.
Eggers
, “
Theory of the forced wetting transition
,”
Phys. Fluids
24
,
072104
(
2012
).
42.
R.
Burley
and
B. S.
Kennedy
, “
An experimental study of air entrainment at a solid/liquid/gas interface
,”
Chem. Eng. Sci.
31
,
901
911
(
1976
).
43.
H.
Benkreira
and
J. B.
Ikin
, “
Dynamic wetting and gas viscosity effects
,”
Chem. Eng. Sci.
65
,
1790
1796
(
2010
).
44.
A.
Marchand
,
T. S.
Chan
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
Air entrainment by contact lines of a solid plate plunged into a viscous fluid
,”
Phys. Rev. Lett.
108
,
204501
(
2012
).
45.
S. G.
Jennings
, “
The mean free path in air
,”
J. Aerosol Sci.
19
,
159
166
(
1988
).
46.
J. H.
Snoeijer
,
G.
Delon
,
M.
Fermigier
, and
B.
Andreotti
, “
Avoided critical behavior in dynamically forced wetting
,”
Phys. Rev. Lett.
96
,
174504
(
2006
).
47.
S. M.
Troian
,
E.
Herbolzheimer
,
S. A.
Safran
, and
J. F.
Joanny
, “
Fingering instabilities of driven spreading films
,”
Europhys. Lett.
10
,
25
30
(
1989
).
48.
M. A.
Spaid
and
G. M.
Homsy
, “
Stability of Newtonian and viscoelastic dynamic contact lines
,”
Phys. Fluids
8
,
460
478
(
1996
).
49.
A. L.
Bertozzi
and
M. P.
Brenner
, “
Linear stability and transient growth in driven contact lines
,”
Phys. Fluids
9
,
530
539
(
1997
).
You do not currently have access to this content.