Hemodynamics plays an essential role in the progression and treatment of cardiovascular disease. However, while medical imaging provides increasingly detailed anatomical information, clinicians often have limited access to hemodynamic data that may be crucial to patient risk assessment and treatment planning. Computational simulations can now provide detailed hemodynamic data to augment clinical knowledge in both adult and pediatric applications. There is a particular need for simulation tools in pediatric cardiology, due to the wide variation in anatomy and physiology in congenital heart disease patients, necessitating individualized treatment plans. Despite great strides in medical imaging, enabling extraction of flow information from magnetic resonance and ultrasound imaging, simulations offer predictive capabilities that imaging alone cannot provide. Patient specific simulations can be used for in silico testing of new surgical designs, treatment planning, device testing, and patient risk stratification. Furthermore, simulations can be performed at no direct risk to the patient. In this paper, we outline the current state of the art in methods for cardiovascular blood flow simulation and virtual surgery. We then step through pressing challenges in the field, including multiscale modeling, boundary condition selection, optimization, and uncertainty quantification. Finally, we summarize simulation results of two representative examples from pediatric cardiology: single ventricle physiology, and coronary aneurysms caused by Kawasaki disease. These examples illustrate the potential impact of computational modeling tools in the clinical setting.

1.
R. H.
Haynes
and
A. C.
Burton
, “
Role of the non-Newtonian behavior of blood in hemodynamics
,”
Am. J. Physiol.
12
(
197
),
943
950
(
1959
).
2.
F. J. H.
Gijsen
,
E.
Allanic
,
F. N.
Van de Vosse
, and
J. D.
Janssen
, “
The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube
,”
J. Biomech.
32
(
7
),
705
713
(
1999
).
3.
I. E.
Vignon-Clementel
,
C. A.
Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
,”
Comput. Methods Appl. Mech. Eng.
195
,
3776
3796
(
2006
).
4.
C. A.
Figueroa
,
I. E.
Vignon-Clementel
,
K. E.
Jansen
,
T. J.
Hughes
, and
C. A.
Taylor
, “
A coupled momentum method for modeling blood flow in three-dimensional deformable arteries
,”
Comput. Methods Appl. Mech. Eng.
195
(
41–43
),
5685
5706
(
2006
).
5.
C. A.
Taylor
,
T. J. R.
Hughes
, and
C. K.
Zarins
, “
Finite element modeling of blood flow in arteries
,”
Comput. Methods Appl. Mech. Eng.
158
,
155
196
(
1998
).
6.
D. A.
Steinman
, “
Image-based computational fluid dynamics modeling in realistic arterial geometries
,”
Ann. Biomed. Eng.
30
(
4
),
483
497
(
2002
).
7.
E. L.
Bove
,
F.
Migliavacca
,
M. R.
de Leval
,
R.
Balossino
,
G.
Pennati
,
T. R.
Lloyd
,
S.
Khambadkone
,
T.-Y.
Hsia
, and
G.
Dubini
, “
Use of mathematic modeling to compare and predict hemodynamic effects of the modified Blalock-Taussig and right ventricle-pulmonary artery shunts for hypoplastic left heart syndrome
,”
J. Thorac. Cardiovasc. Surg.
136
(
2
),
312
320
(
2008
).
8.
K.
Lagana
,
G.
Dubini
,
F.
Migliavacca
,
R.
Pietrabissa
,
G.
Pennati
,
A.
Veneziani
, and
A.
Quarteroni
, “
Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures
,”
Biorheology
39
,
359
364
(
2002
).
9.
B. T.
Tang
,
C. P.
Cheng
,
M. T.
Draney
,
N. M.
Wilson
,
P. S.
Tsao
,
R. J.
Herfkens
, and
C. A.
Taylor
, “
Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
291
,
H668
H676
(
2006
).
10.
S. C.
Shadden
and
C. A.
Taylor
, “
Characterization of coherent structures in the cardiovascular system
,”
Ann. Biomed. Eng.
36
(
7
),
1152
1162
(
2008
).
11.
C. A.
Taylor
,
C. P.
Cheng
,
L. A.
Espinosa
,
B. T.
Tang
,
D.
Parker
, and
R. J.
Herfkens
, “
In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise
,”
Ann. Biomed. Eng.
30
,
402
408
(
2002
).
12.
C. P.
Cheng
,
R. J.
Herfkins
,
A. L.
Lightner
,
C. A.
Taylor
, and
J. A.
Feinstein
, “
Blood flow conditions in the proximal pulmonary arteries and vena cavae: healthy children during upright cycling exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
287
(
2
),
H921
H926
(
2004
).
13.
Y.
Bazilevs
,
M. C.
Hsu
,
D. J.
Benson
,
S.
Sankaran
, and
A. L.
Marsden
, “
Computational fluid-structure interaction: methods and application to a total cavopulmonary connection
,”
Comput. Mech.
45
(
1
),
77
89
(
2009
).
14.
Y.
Zhang
,
B.
Bazilevs
,
S.
Goswami
,
C. L.
Bajaj
, and
T. J. R.
Hughes
, “
Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow
,”
Comput. Methods Appl. Mech. Eng.
196
,
2943
2959
(
2007
).
15.
J. P.
Ku
,
M. T.
Draney
,
F. R.
Arko
,
W. A.
Lee
,
F.
Chan
,
N. J.
Pelc
,
C. K.
Zarins
, and
C. A.
Taylor
, “
In vivo validation of numerical predictions of blood flow in arterial bypass grafts
,”
Ann. Biomed. Eng.
30
(
6
),
743
752
(
2002
).
16.
A.
Marsden
,
A.
Bernstein
,
V.
Reddy
 et al, “
Evaluation of a novel y-shaped extracardiac Fontan baffle using computational fluid dynamics
,”
J. Thorac. Cardiovasc. Surg.
137
(
2
),
394
403
(
2009
).
17.
M.
de Leval
,
G.
Dubini
 et al, “
Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections
,”
J. Thorac. Cardiovasc. Surg.
111
(
3
),
502
513
(
1996
).
18.
L.
Dasi
,
K.
Pekkan
,
H.
Katajima
, and
A.
Yoganathan
, “
Functional analysis of Fontan energy dissipation
,”
J. Biomech.
41
(
10
),
2246
2252
(
2008
).
19.
M. R.
de Leval
,
P.
Kilner
,
M.
Gewillig
, and
C.
Bull
, “
Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience
,”
J. Thorac. Cardiovasc. Surg.
96
,
682
695
(
1988
).
20.
J.
Min
,
D.
Berman
,
L.
Shaw
 et al, “
Fractional flow reserved derived from computed tomographic angiography (FFRCT) for intermediate severity coronary lesions: Results from the DeFACTO trial (determination of fractional flow reserve by anatomic computed tomographic angiography)
,”
J. Am. Coll. Cardiol.
60
(
17
),
B6
B6
(
2012
).
21.
S.
Sankaran
,
M.
Moghadam
,
A.
Kahn
,
E.
Tseng
,
J.
Guccione
, and
A.
Marsden
, “
Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery
,”
Ann. Biomed. Eng.
40
(
10
),
2228
2242
(
2012
).
22.
D.
Sengupta
,
A.
Kahn
,
J.
Burns
,
S.
Sankaran
,
S.
Shadden
, and
A.
Marsden
, “
Image-based modeling of hemodynamics and coronary artery aneurysms caused by Kawasaki disease
,”
Biomech. Model. Mechanobiol.
11
(
6
),
915
932
(
2012
).
23.
A.
Les
,
S.
Shadden
,
C.
Figueroa
,
J.
Park
,
M.
Tedesco
,
R.
Herfkens
,
R.
Dalman
, and
C.
Taylor
, “
Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics
,”
Ann. Biomed. Eng.
38
(
4
),
1288
1313
(
2010
).
24.
M. A.
Castro
,
C. M.
Putman
, and
J. R.
Cebral
, “
Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics
,”
AJNR Am. J. Neuroradiol.
27
(
8
),
1703
1709
(
2006
).
25.
J. F.
LaDisa
 Jr.
,
L.
Olson
,
I.
Guler
,
D.
Hettrick
,
S.
Audi
,
J.
Kersten
,
D.
Warltier
, and
P.
Pagel
, “
Stent design properties and deployment ratio influence indices of wall shear stress: a 3d computational fluid dynamics investigation within a normal artery
,”
J. Appl. Physiol.
97
(
1
),
424
430
(
2004
).
26.
J. F.
LaDisa
,
C. A.
Figueroa
,
I. E.
Vignon-Clementel
,
H. J.
Kim
,
N.
Xiao
,
L. M.
Ellwein
,
F. P.
Chan
,
J. A.
Feinstein
, and
C. A.
Taylor
, “
Computational simulations for aortic coarctation: Representative results from a sampling of patients
,”
J. Biomech. Eng.
133
(
9
),
091008
(
2011
).
27.
T.
Gundert
,
A.
Marsden
,
W.
Yang
,
D.
Marks
, and
J.
LaDisa
, “
Identification of hemodynamically optimal coronary stent designs based on vessel caliber
,”
IEEE Trans. Biomed. Eng.
59
(
7
),
1992
2002
(
2012
).
28.
T.
Gundert
,
A.
Marsden
,
W.
Yang
, and
J.
LaDisa
, “
Optimization of cardiovascular stent design using computational fluid dynamics
,”
ASME J. Biomech. Eng.
134
(
1
),
011002
(
2012
).
29.
C.
Long
,
A.
Marsden
, and
Y.
Bazilevs
, “
Fluid–structure interaction simulation of pulsatile ventricular assist devices
,”
Comput. Mech.
52
(
5
),
971
981
(
2013
).
30.
C.
Figueroa
,
C.
Taylor
,
A.
Chiou
,
V.
Yeh
, and
C.
Zarins
, “
Magnitude and direction of pulsatile displacement forces acting on thoracic aortic endografts
,”
J. Endovasc. Ther.
16
(
3
),
350
358
(
2009
).
31.
A.
Lonyai
,
A. M.
Dubin
,
J. A.
Feinstein
,
C. A.
Taylor
, and
S. C.
Shadden
, “
New insights into pacemaker lead-induced venous occlusion: simulation-based investigation of alterations in venous biomechanics
,”
Cardiovasc. Eng.
10
(
2
),
84
90
(
2010
).
32.
V. T.
Thomas
,
Partners of the Heart: Vivien Thomas and His Work with Alfred Blalock: An Autobiography
(
University of Pennsylvania Press
,
1998
).
33.
G. W.
Miller
,
King of Hearts: The True Story of the Maverick Who Pioneered Open Heart Surgery
(
Broadway Books
,
2000
).
34.
J.
Womersley
, “
An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries
,” Air Research and Development Command, United States Air Force, Wright Air Development Center, Wright-Patterson Air Force Base, Ohio (1957).
35.
N.
Westerhof
,
F.
Bosman
,
C. J.
De Vries
, and
A.
Noordergraaf
, “
Analog studies of the human systemic arterial tree
,”
J. Biomech.
2
,
121
143
(
1969
).
36.
N.
Westerhof
,
J.
Lankhaar
, and
B. E.
Westerhof
, “
The arterial windkessel
,”
Med. Biol. Eng. Comput.
47
(
2
),
131
141
(
2009
).
37.
T. J. R.
Hughes
and
J.
Lubliner
, “
On the 1 dimensional theory of blood flow in the larger vessels
,”
Math. Biosci.
18
,
161
170
(
1973
).
38.
D. A.
Steinman
and
C. A.
Taylor
, “
Flow imaging and computing: large artery hemodynamics
,”
Ann. Biomed. Eng.
33
(
12
),
1704
1709
(
2005
).
39.
C. A.
Taylor
,
T. J. R.
Hughes
, and
C. K.
Zarins
, “
Computational investigations in vascular disease
,”
Comput. Phys.
10
(
3
),
224
232
(
1996
).
40.
G. E.
Karniadakis
and
S. J.
Sherwin
,
Spectral/hp Element Methods for Computational Fluid Dynamics
(
Oxford University Press
,
1999
).
41.
K. E.
Jansen
,
C. H.
Whiting
, and
G. M.
Hulbert
, “
A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method
,”
Comput. Methods Appl. Mech. Eng.
190
(
3–4
),
305
319
(
2000
).
42.
H. J.
Kim
,
I. E.
Vignon-Clementel
,
C. A.
Figueroa
,
J. F.
LaDisa
,
K. E.
Jansen
,
J. A.
Feinstein
, and
C. A.
Taylor
, “
On coupling a lumped parameter heart model and a three-dimensional finite element aorta model
,”
Ann. Biomed. Eng.
37
(
11
),
2153
2169
(
2009
).
43.
J.
Muller
,
O.
Sahni
,
X.
Li
,
K. E.
Jansen
,
M. S.
Shephard
, and
C. A.
Taylor
, “
Anisotropic adaptive finite element method for modeling blood flow
,”
Comput. Methods Biomech. Biomed. Eng.
8
(
5
),
295
305
(
2005
).
44.
M. E.
Moghadam
,
Y.
Bazilevs
,
T.-Y.
Hsia
,
I.
Vignon-Clementel
, and
A.
Marsden
, “
A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations
,”
Comput. Mech.
48
,
277
291
(
2011
).
45.
G.
Xiong
,
C.
Figueroa
,
N.
Xiao
, and
C.
Taylor
, “
Simulation of blood flow in deformable vessels using subject–specific geometry and spatially varying wall properties
,”
Int. J. Numer. Methods Biomed. Eng.
27
(
7
),
1000
1016
(
2011
).
46.
M. E.
Moghadam
,
I.
Vignon-Clementel
,
R.
Figliola
, and
A.
Marsden
, “
A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations
,”
J. Comput. Phys.
244
,
63
79
(
2013
).
47.
J. P.
Schmidt
,
S. L.
Delp
,
M. A.
Sherman
,
C. A.
Taylor
,
V. S.
Pande
, and
R. B.
Altman
, “
The Simbios national center: Systems biology in motion
,”
Proc. IEEE
96
(
8
),
1266
1280
(
2008
).
48.
A.
Saad
,
T.
Möller
, and
G.
Hamarneh
, “
Probexplorer: Uncertainty-guided exploration and editing of probabilistic medical image segmentation
,”
Computer Graphics Forum
(
Wiley Online Library
,
2010
), Vol.
29
, pp.
1113
1122
.
49.
J.
Prassni
,
T.
Ropinski
, and
K.
Hinrichs
, “
Uncertainty-aware guided volume segmentation
,”
IEEE Trans. Vis. Comput. Graph.
16
(
6
),
1358
1365
(
2010
).
50.
I.
Simpson
,
M.
Woolrich
, and
J.
Schnabel
, “
Probabilistic segmentation propagation from uncertainty in registration
,” in
Proceedings Medical Image Analysis and Understanding (MIUA)
(
2011
), pp.
331
335
; available online at http://discovery.ucl.ac.uk/1401757/.
51.
R.
Balossino
,
G.
Pennati
,
F.
Migliavacca
,
L.
Formaggia
,
A.
Veneziani
,
M.
Tuveri
, and
G.
Dubini
, “
Computational models to predict stenosis growth in carotid arteries: Which is the role of boundary conditions?
,”
Comput. Methods Biomech. Biomed. Eng.
12
(
1
),
113
123
(
2009
).
52.
M.
Zamir
,
The Physics of Pulsatile Flow
(
Springer-Verlag
,
New York
,
2000
).
53.
H.
Kim
,
I.
Vignon-Clementel
,
C.
Figueroa
,
K.
Jansen
, and
C.
Taylor
, “
Developing computational methods for three-dimensional finite element simulations of coronary blood flow
,”
Finite Elem. Anal. Design
46
(
6
),
514
525
(
2010
).
54.
H.
Kim
,
I.
Vignon-Clementel
,
J.
Coogan
,
C.
Figueroa
,
K.
Jansen
, and
C.
Taylor
, “
Patient-specific modeling of blood flow and pressure in human coronary arteries
,”
Ann. Biomed. Eng.
38
(
10
),
3195
3209
(
2010
).
55.
H. J.
Kim
,
C. A.
Figueroa
,
T. J. R.
Hughes
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow
,”
Comput. Methods Appl. Mech. Eng.
198
(
45–46
),
3551
3566
(
2009
).
56.
E.
Kung
,
A.
Les
,
C.
Figueroa
,
F.
Medina
,
K.
Arcaute
,
R.
Wicker
,
M.
McConnell
, and
C.
Taylor
, “
In vitro validation of finite element analysis of blood flow in deformable models
,”
Ann. Biomed. Eng.
39
(
7
),
1947
1960
(
2011
).
57.
E. O.
Kung
,
F.
Medina
,
M. V.
McConnell
,
C. A.
Taylor
,
R. B.
Wicker
, and
A. S.
Les
, “
In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions
,”
J. Biomech. Eng.
133
(
4
),
041003
(
2011
).
58.
M.
Vukicevic
,
J. A.
Chiulli
,
T.
Conover
,
G.
Pennati
,
T. Y.
Hsia
, and
R. S.
Figliola
, “
Mock circulatory system of the Fontan circulation to study respiration effects on venous flow behavior
,”
Comput. Methods Appl. Mech. Eng.
59
(
3
),
253
260
(
2013
).
59.
B. K.
Koo
,
A.
Erglis
,
J. H.
Doh
,
D. V.
Daniels
,
S.
Jegere
,
H. S.
Kim
,
A.
Dunning
,
T.
Defrance
,
A.
Lansky
,
J.
Leipsic
, and
J. K.
Min
, “
Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms
,”
JACC
58
(
19
),
1989
1997
(
2011
).
60.
A. Q. V.
Agoshkov
and
G.
Rozza
, “
Shape design in aorto-coronaric bypass using perturbation theory
,”
SIAM J. Numer. Anal.
44
,
367
384
(
2006
).
61.
A. V.
Agoshkov
and
G.
Rozza
, “
A mathematical approach in the design of arterial bypass anastomoses using unsteady Stokes equations
,”
J. Sci. Comput.
28
,
139
161
(
2006
).
62.
F.
Abraham
,
M.
Behr
, and
M.
Heinkenschloss
, “
Shape optimization in unsteady blood flow: A numerical study of non-Newtonian effects
,”
Comput. Methods Biomech. Biomed. Eng.
8
,
201
212
(
2005
).
63.
A.
Quarteroni
and
G.
Rozza
, “
Optimal control and shape optimization in aorto-coronaric bypass anastomoses
,”
Math. Models Meth. Appl. Sci.
13
,
1801
1823
(
2003
).
64.
D. D.
Soerensen
,
K.
Pekkan
,
D.
de Zelicourt
,
S.
Sharma
,
K.
Kanter
,
M.
Fogel
, and
A.
Yoganathan
, “
Introduction of a new optimized total cavopulmonary connection
,”
Ann. Thorac. Surg.
83
(
6
),
2182
2190
(
2007
).
65.
A.
Jameson
, “
Aerodynamic design via control theory
,”
J. Sci. Comput.
3
,
233
260
(
1988
).
66.
A.
Jameson
,
L.
Martinelli
, and
N. A.
Pierce
, “
Optimum aerodynamic design using the Navier-Stokes equations
,”
Theor. Comput. Fluid Dyn.
10
,
213
237
(
1998
).
67.
A. J.
Booker
,
J. E.
Dennis
 Jr.
,
P. D.
Frank
,
D. B.
Serafini
,
V.
Torczon
, and
M. W.
Trosset
, “
A rigorous framework for optimization of expensive functions by surrogates
,”
Struct. Optim.
17
(
1
),
1
13
(
1999
).
68.
D. B.
Serafini
, “
A framework for managing models in nonlinear optimization of computationally expensive functions
,” Ph.D. thesis (
Rice University
, Houston, TX,
1998
).
69.
A. L.
Marsden
,
M.
Wang
,
J. E.
Dennis
 Jr.
, and
P.
Moin
, “
Optimal aeroacoustic shape design using the surrogate management framework
,”
Optim. Eng.
5
(
2
),
235
262
(
2004
), Special Issue: Surrogate Optimization.
70.
A. L.
Marsden
,
M.
Wang
,
J. E.
Dennis
 Jr.
, and
P.
Moin
, “
Suppression of airfoil vortex-shedding noise via derivative-free optimization
,”
Phys. Fluids
16
(
10
),
L83
L86
(
2004
).
71.
A. L.
Marsden
,
M.
Wang
,
J. E.
Dennis
 Jr.
, and
P.
Moin
, “
Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation
,”
J. Fluid Mech.
572
,
13
36
(
2007
).
72.
C.
Audet
and
J. E.
Dennis
 Jr.
, “
Mesh adaptive direct search algorithms for constrained optimization
,”
SIAM J. Optimization
17
(
1
),
188
217
(
2006
).
73.
C.
Audet
, “
Convergence results for pattern search algorithms are tight
,”
Optim. Eng.
5
(
2
),
101
122
(
2004
).
74.
C.
Audet
and
J. E.
Dennis
 Jr.
, “
A pattern search filter method for nonlinear programming without derivatives
,”
SIAM J. Optim.
14
(
4
),
980
1010
(
2004
).
75.
A. L.
Marsden
,
J. A.
Feinstein
, and
C. A.
Taylor
, “
A computational framework for derivative-free optimization of cardiovascular geometries
,”
Comput. Methods Appl. Mech. Eng.
197
(
21–24
),
1890
1905
(
2008
).
76.
W.
Yang
,
J. A.
Feinstein
, and
A. L.
Marsden
, “
Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise
,”
Comput. Methods Appl. Mech. Eng.
199
,
2135
2149
(
2010
).
77.
W.
Yang
,
J. A.
Feinstein
,
S.
Shadden
,
I.
Vignon-Clementel
, and
A. L.
Marsden
, “
Optimization of a y-graft design for improved hepatic flow distribution in the Fontan circulation
,”
J. Biomech. Eng.
135
(
1
),
011002
(
2013
).
78.
S.
Sankaran
,
C.
Audet
, and
A.
Marsden
, “
A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation
,”
J. Comput. Phys.
229
(
12
),
4664
4682
(
2010
).
79.
S.
Sankaran
and
A.
Marsden
, “
The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow
,”
Phys. Fluids
22
(
12
),
121902
(
2010
).
80.
S.
Sankaran
,
J. D.
Humphrey
, and
A. L.
Marsden
, “
An efficient framework for optimization and parameter sensitivity analysis in arterial growth and remodeling computations
,”
Comput. Methods Appl. Mech. Eng.
256
,
200
210
(
2013
).
81.
S.
Sankaran
and
A.
Marsden
, “
A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations
,”
J. Biomech. Eng.
133
(
3
),
031001
(
2011
).
82.
D.
Xiu
and
J.
Hesthaven
, “
High-order collocation methods for differential equations with random inputs
,”
SIAM J. Sci. Comput. (USA)
27
(
3
),
1118
1139
(
2005
).
83.
I.
Babuška
,
F.
Nobile
, and
R.
Tempone
, “
A stochastic collocation method for elliptic partial differential equations with random input data
,”
SIAM J. Numer. Anal.
45
(
3
),
1005
1034
(
2007
).
84.
R.
Ghanem
and
R.
Kruger
, “
Numerical solution of spectral stochastic finite element systems
,”
Comput. Methods Appl. Mech. Eng.
129
(
3
),
289
303
(
1996
).
85.
H.
Najm
, “
Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
,”
Annu. Rev. Fluid Mech.
41
,
35
52
(
2009
).
86.
Y.
Bazilevs
,
V. M.
Calo
,
T. J. R.
Hughes
, and
Y.
Zhang
, “
Isogeometric fluid-structure interaction: theory, algorithms and computations
,”
Comput. Mech.
43
,
3
37
(
2008
).
87.
C.
Long
,
M.
Hsu
,
Y.
Bazilevs
,
J.
Feinstein
, and
A.
Marsden
, “
Fluid–structure interaction simulations of the Fontan procedure using variable wall properties
,”
Int. J. Numer. Methods Biomed. Eng.
28
(
5
),
513
527
(
2012
).
88.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
(
3
),
220
252
(
1977
).
89.
F.
Fontan
and
E.
Baudet
, “
Surgical repair of tricuspid atresia
,”
Thorax
26
,
240
248
(
1971
).
90.
D. N.
Rosenthal
,
A. H.
Friedman
,
C. S.
Kleinman
,
G. S.
Kopf
,
L. E.
Rosenfeld
, and
W. E.
Hellenbrand
, “
Thromboembolic complications after Fontan operations
,”
Circulation
92
,
287
293
(
1995
).
91.
E.
Petrossian
,
V. M.
Reddy
,
K. K.
Collins
,
C. B.
Culbertson
,
M. J.
MacDonald
,
J. J.
Lamberti
,
O.
Reinhartz
,
R. D.
Mainwaring
,
P. D.
Francis
,
S. P.
Malhotra
,
D. B.
Gremmels
,
S.
Suleman
, and
F. L.
Hanley
, “
The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: Early and midterm outcomes
,”
J. Thorac. Cardiovasc. Surg.
132
(
5
),
1054
1063
(
2006
).
92.
B. S.
Marino
, “
Outcomes after the Fontan procedure
,”
Curr. Opin. Pediatr.
14
,
620
626
(
2002
).
93.
F.
Migliavacca
,
G.
Dubini
,
E. L.
Bove
, and
M. R.
de Leval
, “
Computational fluid dynamics simulations in realistic 3D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis
,”
J. Biomech. Eng.
125
,
805
813
(
2003
).
94.
A. L.
Marsden
,
I. E.
Vignon-Clementel
,
F.
Chan
,
J. A.
Feinstein
, and
C. A.
Taylor
, “
Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection
,”
Ann. Biomed. Eng.
35
(
2
),
250
263
(
2007
).
95.
K. K.
Whitehead
,
K.
Pekkan
,
H. D.
Kitahima
,
S. M.
Paridon
,
A. P.
Yoganathan
, and
M. A.
Fogel
, “
Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics
,”
Circulation
116
,
I
165
I
171
(
2007
).
96.
C. G.
DeGroff
, “
Modeling the Fontan circulation: Where we are and where we need to go
,”
Pediatr. Cardiol.
29
,
3
12
(
2008
).
97.
A. L.
Marsden
,
A. J.
Bernstein
,
R. L.
Spilker
,
F. P.
Chan
,
C. A.
Taylor
, and
J. A.
Feinstein
, “
Large differences in efficiency among Fontan patients demonstrated in patient specific models of blood flow simulations
,”
Circulation Suppl. II
116
(
16
),
480
(
2007
).
98.
A. L.
Marsden
,
V.
Reddy
,
S.
Shadden
,
F.
Chan
,
C.
Taylor
, and
J.
Feinstein
, “
A new multiparameter approach to computational simulation for Fontan assessment and redesign
,”
Congenital Heart Dis.
5
(
2
),
104
117
(
2010
).
99.
N. A.
Pike
,
L. A.
Vricella
,
J. A.
Feinstein
,
M. D.
Black
, and
B. A.
Reitz
, “
Regression of severe pulmonary arteriovenous malformations after Fontan revision and hepatic factor rerouting
,”
Ann. Thorac. Surg.
78
,
697
699
(
2004
).
100.
W.
Yang
,
I.
Vignon-Clementel
,
G.
Troianowski
,
V.
Reddy
,
J. A.
Feinstein
, and
A. L.
Marsden
, “
Hepatic blood flow distribution and performance in traditional and novel Y-graft Fontan geometries: A case series computational fluid dynamics study
,”
J. Thorac. Cardiovasc. Surg.
143
(
5
),
1086
1097
(
2012
).
101.
K.
Kanter
,
C.
Haggerty
,
M.
Restrepo
,
D.
de Zelicourt
,
J.
Rossignac
,
W.
Parks
, and
A.
Yoganathan
, “
Preliminary clinical experience with a bifurcated y-graft Fontan procedure–A feasibility study
,”
J. Thorac. Cardiovasc. Surg.
144
(
2
),
383
389
(
2012
).
102.
G.
Dubini
,
M. R.
de Leval
,
R.
Pietrabissa
,
F. M.
Montevecchi
, and
R.
Fumero
, “
A numerical fluid mechanical study of repaired congenital heart defects: Application to the total cavopulmonary connection
,”
J. Biomech.
29
(
1
),
111
121
(
1996
).
103.
A. E.
Ensley
,
P.
Lynch
,
G. P.
Chatzimavroudis
,
C.
Lucas
,
S.
Sharma
, and
A. P.
Yoganathan
, “
Toward designing the optimal total cavopulmonary connection: An in vitro study
,”
Ann. Thorac. Surg.
68
,
1384
1390
(
1999
).
104.
T. M.
Healy
,
C.
Lucas
, and
A. P.
Yoganathan
, “
Noninvasive fluid dynamic power loss assessments for total cavopulmonary connections using the viscous dissipation function: a feasibility study
,”
J. Biomech. Eng.
123
,
317
324
(
2001
).
105.
K.
Ryu
,
T. M.
Healy
,
A. E.
Ensley
,
S.
Sharma
,
C.
Lucas
, and
A. P.
Yoganathan
, “
Importance of accurate geometry in the study of the total cavopulmonary connection: Computational simulations and in vitro experiments
,”
Ann. Biomed. Eng.
29
,
844
853
(
2001
).
106.
K.
Pekkan
,
L. P.
Dasi
,
D.
de Zelicourt
,
K. S.
Sundareswaran
,
M. A.
Fogel
,
K. R.
Kanter
, and
A. P.
Yoganathan
, “
Hemodynamic performance of stage-2 univentricular reconstruction: Glenn vs. hemi-Fontan templates
,”
Ann. Biomed. Eng.
37
(
1
),
50
63
(
2008
).
107.
E. D.
Belay
,
R. C.
Holman
,
R. A.
Maddox
,
D. A.
Foster
, and
L. B.
Schonberger
, “
Kawasaki syndrome hospitalizations and associated costs in the United States
,”
Public Health Rep.
118
(
5
),
464
469
(
2003
).
108.
J. C.
Burns
,
E. V.
Capparelli
,
J. A.
Brown
,
J. W.
Newburger
, and
M. P.
Glode
, “
Intravenous gamma-globulin treatment and retreatment in Kawasaki disease
,”
Pediatr. Infect. Dis. J.
17
(
12
),
1144
1148
(
1998
).
109.
T.
Akagi
,
Interventions in Kawasaki Disease
(
Springer
,
2005
), pp.
206
212
.
110.
J. F.
Bastian
,
H. I.
Kushner
,
E.
Miller
,
C.
Williams
,
C.
Turner
, and
J. C.
Burns
, “
Sensitivity of the Kawasaki case definition for detecting coronary artery abnormalities
,
Pediatr. Res.
53
,
163
(
2003
).
111.
E. S.
Yellen
,
K.
Gauvreau
,
A. L.
Baker
,
M.
Takahashi
,
J. C.
Burns
,
C.
Zambetti
,
J. M.
Pancheri
,
J. R.
Frazer
,
R. P.
Sundel
,
D. R.
Fulton
, and
J. W.
Newburger
, “
New AHA recommendations improve recognition and treatment of Kawasaki disease: A multicenter retrospective review of patients with coronary aneurysms
,” Circulation
116
, II_660 (
2007
).
You do not currently have access to this content.