The spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator is investigated using a photomultiplier tube, a high-sensitivity camera, particle image velocimetry, and electrohydrodynamics simulations. Plasma actuators have typically demonstrated their utility in flow separation control, but on a millimetric scale they have also shown to be promising in the control of crossflow instabilities in crossflow-dominated laminar-turbulent boundary-layer transition. In view of the subtleties associated with creating an initial disturbance to excite subcritical wavelengths, it is desirable to characterize the local plasma discharge structure, body force organization, and induced velocity field in detail. The results show that, similar to their linear centimetric counterpart, the plasma discharge has a highly dynamic and somewhat organized spatiotemporal structure. Under quiescent flow conditions, the actuator induces a velocity field that consists of two counter-rotating vortices, accompanied by a wall-normal synthetic jet region, which in three-dimensions describes a toroidal vortex around the aperture's periphery. The surprising result, however, is that these vortices rotate in the opposite direction to vortices generated by similar centimetric annular designs. Three-dimensional electrohydrodynamics simulations correctly reproduce this behavior. Because the body force organization may be qualitatively perceived as being the axisymmetric counterpart of the more classical linear actuator, this flow reversal is thought to be due to the actuator scale. When an array of millimetric actuators is considered in close proximity, an interaction takes place between the vortices created from each actuator and those of neighboring actuators, resulting in a significant reduction in vortex size compared with the single aperture case, accompanied by an increase in the maximum induced flow velocity magnitude.

1.
E.
Moreau
, “
Airflow control by non-thermal plasma actuators
,”
J. Phys. D
40
,
605
636
(
2007
).
2.
T. C.
Corke
,
C. L.
Enloe
, and
S. P.
Wilkinson
, “
Plasma actuators for flow control
,”
Annu. Rev. Fluid Mech.
42
,
505
529
(
2010
).
3.
T. C.
Corke
,
M. L.
Post
, and
D. M.
Orlov
, “
SDBD plasma enhanced aerodynamics: Concepts, optimization and applications
,”
Prog. Aerosp. Sci.
43
,
193
217
(
2007
).
4.
G. I.
Font
, “
Boundary layer control with atmospheric plasma discharges
,”
AIAA J.
44
,
1572
1578
(
2006
).
5.
M. L.
Post
and
T. C.
Corke
, “
Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil
,”
AIAA J.
44
,
3125
3135
(
2006
).
6.
J.
Huang
,
T. C.
Corke
, and
F. O.
Thomas
, “
Plasma actuators for separation control of low-pressure turbine blades
,”
AIAA J.
44
,
51
57
(
2006
).
7.
T. N.
Jukes
and
K. S.
Choi
, “
Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma
,”
Phys. Fluids
21
,
084103
(
2009
).
8.
C. L.
Enloe
,
T. E.
McLaughlin
,
R. D.
VanDyken
,
K. D.
Kachner
,
E. J.
Jumper
, and
T. C.
Corke
, “
Mechanisms and responses of a single dielectric barrier plasma actuator: Plasma morphology
,”
AIAA J.
42
,
589
594
(
2004
).
9.
C. L.
Enloe
,
T. E.
McLaughlin
,
R. D.
VanDyken
,
K. D.
Kachner
,
E. J.
Jumper
, and
T. C.
Corke
, “
Mechanisms and responses of a single dielectric barrier plasma actuator: Geometric effects
,”
AIAA J.
42
,
595
604
(
2004
).
10.
D. M.
Orlov
,
G. I.
Font
, and
D.
Edelstein
, “
Characterization of discharge modes of plasma actuators
,”
AIAA J.
46
,
3142
3148
(
2008
).
11.
T.
Abe
,
Y.
Takizawa
,
S.
Sato
, and
N.
Kimura
, “
Experimental study for momentum transfer in a dielectric barrier discharge plasma actuator
,”
AIAA J.
46
,
2248
2256
(
2008
).
12.
J.
Guikema
,
N.
Miller
,
J.
Niehof
,
M.
Klein
, and
M.
Walhout
, “
Spontaneous pattern formation in an effectively one-dimensional diectric-barrier discharge system
,”
Phys. Rev. Lett.
85
,
3817
3820
(
2000
).
13.
U.
Kogelschatz
, “
Filamentary, patterned, and diffuse barrier discharges
,”
IEEE Trans. Plasma Sci.
30
,
1400
1408
(
2002
).
14.
M.
Klein
,
N.
Miller
, and
M.
Walhout
, “
Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system
,”
Phys. Rev. E
64
,
026402
(
2001
).
15.
L. F.
Dong
,
H.
Xiao
,
W. L.
Fan
,
Z. Q.
Yin
, and
H. T.
Zhao
, “
Temporal symmetry of individual filaments in different spatial symmetry filaments pattern in a dielectric barrier discharge
,”
Phys. Plasmas
17
,
102314
(
2010
).
16.
W. S.
Saric
,
H. L.
Reed
, and
E. B.
White
, “
Stability and transition of three-dimensional boundary layers
,”
Annu. Rev. Fluid Mech.
35
,
413
440
(
2003
).
17.
W. S.
Saric
,
R. B.
Carrillo
 Jr.
, and
M. S.
Reibert
, “
Nonlinear stability and transition in 3-D boundary layers
,”
Meccanica
33
,
469
487
(
1998
).
18.
W. S.
Saric
,
A. L.
Carpenter
, and
H. L.
Reed
, “
Passive control of transition in three-dimensional boundary layers, with emphasis on discrete roughness elements
,”
Philos. Trans. R. Soc. London, Ser. A
369
,
1352
1364
(
2011
).
19.
T. C.
Corke
,
D. A.
Cavalieri
, and
E.
Matlis
, “
Boundary-layer instability on sharp cone at Mach 3.5 with controlled input
,”
AIAA J.
40
,
1015
1018
(
2002
).
20.
E. H.
Matlis
, “
Controlled experiments on instabilities and transition to turbulence on sharp cone at Mach 3.5
,” Ph.D. dissertation (
University of Notre Dame
,
2003
).
21.
C. Y.
Schuele
, “
Control of stationary cross-flow modes in a Mach 3.5 boundary layer using passive and active roughness
,” Ph.D. dissertation (
University of Notre Dame
,
2011
).
22.
A.
Santhanakrishan
and
J. D.
Jacob
, “
Flow control with plasma synthetic jet actuators
,”
J. Phys. D
40
,
637
651
(
2007
).
23.
R. J.
Durscher
and
S.
Roy
, “
Three-dimensional flow measurements induced from serpentine plasma actuators in quiescent air
,”
J. Phys. D
45
,
035202
(
2012
).
24.
J. R.
Roth
,
D. M.
Sherman
, and
S. P.
Wilkinson
, “
Electrohydrodynamic flow control with a glow-discharge surface plasma
,”
AIAA J.
38
,
1166
1172
(
2000
).
25.
S. O.
Macheret
,
M. N.
Shneider
, and
R. B.
Miles
, “
Modeling of air plasma generation by repetitive high-voltage nanosecond pulses
,”
IEEE Trans. Plasma Sci.
30
,
1301
1314
(
2002
).
26.
A. V.
Likhanskii
,
M. N.
Shneider
,
S. O.
Macheret
, and
R. B.
Miles
, “
Modeling of dielectric barrier discharge plasma actuators driven by repetitive nanosecond pulses
,”
Phys. Plasmas
14
,
073501
(
2007
).
27.
A. V.
Likhanskii
,
M. N.
Shneider
,
S. O.
Macheret
, and
R. B.
Miles
, “
Modeling of dielectric barrier discharge plasma in air
,”
J. Appl. Phys.
103
,
053305
(
2008
).
28.
J. P.
Boeuf
and
L. C.
Pitchford
, “
Electrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge
,”
J. Appl. Phys.
97
,
103307
(
2005
).
29.
B. E.
Mertz
and
T. C.
Corke
, “
Single-dielectric barrier discharge plasma actuator modelling and validation
,”
J. Fluid Mech.
669
,
557
583
(
2011
).
30.
U.
Kogelschatz
,
B.
Eliasson
, and
W.
Egli
, “
Dielectric-barrier discharges. Principle and applications
,”
J. Phys. IV France
7
,
C4
47
C4
66
(
1997
).
31.
N.
Jidenko
,
E.
Bourgeois
, and
J. P.
Borra
, “
Temperature profiles in filamentary dielectric barrier discharges at atmospheric pressure
,”
J. Phys. D
43
,
295203
(
2010
).
32.
L.
Pietronero
and
H. J.
Wiesmann
, “
Stochastic model for dielectric breakdown
,”
J. Stat. Phys.
36
,
909
916
(
1984
).
33.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
London
,
2000
).
34.
A.
Glezer
and
M.
Amitay
, “
Synthetic jets
,”
Annu. Rev. Fluid Mech.
34
,
503
529
(
2002
).
35.
J. D. A.
Walker
,
C. R.
Smith
,
A. W.
Cerra
, and
T. L.
Doligalski
, “
The impact of a vortex ring on a wall
,”
J. Fluid Mech.
181
,
99
140
(
1987
).
36.
D. P.
Rizetta
,
M. R.
Visbal
,
H. L.
Reed
, and
W. S.
Saric
, “
Direct numerical simulation of discrete roughness on a swept-wing leading edge
,”
AIAA J.
48
,
2660
2673
(
2010
).
37.
M.
Kotsonis
,
L.
Ghaemi
,
L.
Veldhuis
, and
F.
Scarano
, “
Measurements of the body force field of plasma actuators
,”
J. Phys. D
44
,
045204
(
2011
).
You do not currently have access to this content.