We consider the compressible flow analogue of the solution known colloquially as the Hart-McClure profile. This potential motion is used to describe the mean flow in the original energy-based combustion instability framework. In this study, we employ the axisymmetric compressible form of the potential equation for steady, inviscid, irrotational flow assuming uniform injection of a calorically perfect gas in a porous, right-cylindrical chamber. This equation is expanded to order |${\bf M}_{\rm w}^4 $|Mw4 using a Rayleigh-Janzen sequence in powers of |${\bf M}_{\rm w}^{\rm 2} $|Mw2, where Mw is the wall Mach number. At leading order, we readily recover the original Hart-McClure profile and, at |${\bf M}_{\rm w}^{\rm 2} $|Mw2, a closed-form representation of the compressible correction. By way of confirmation, the same solution is re-constructed using a novel application of the vorticity-streamfunction technique. In view of the favorable convergence properties of the Rayleigh-Janzen expansion, the resulting approximation can be relied upon from the headwall down to the sonic point and slightly beyond in a long porous tube or nozzleless chamber. As a windfall, the compressible Sellars motion that arises in the reverse flow problem driven by wall suction is deduced. Based on the simple closed-form expressions that prescribe this motion, the principal flow attributes are quantified parametrically and compared to existing incompressible and one-dimensional theories. In this effort, the local Mach number and pressure are calculated and shown to provide an improved formulation when gauged against one-dimensional theory. Our results are also compared to the two-dimensional axisymmetric solution obtained by Majdalani [“On steady rotational high speed flows: The compressible Taylor-Culick profile,” Proc. R. Soc. London, Ser. A463, 131162 (2007) https://doi.org/10.1098/rspa.2006.1755]. After rescaling the axial coordinate by the critical length Ls, a parametrically-free form is obtained that is essentially independent of the Mach number. This behavior is verified analytically, thus confirming Majdalani's geometric similarity with respect to the critical distance. A secondary verification by computational fluid dynamics is also undertaken. When compared to existing rotational models, the compressible Hart-McClure plug-flow requires, as it should, a slightly longer distance to reach the speed of sound at the centerline. With this model, however, not only the centerline but the entire cross-section becomes fully choked.

1.
J.
Majdalani
, “
On steady rotational high speed flows: The compressible Taylor-Culick profile
,”
Proc. R. Soc. London, Ser. A
463
,
131
162
(
2007
).
2.
M.
Hill
, “
On a spherical vortex
,”
Phil. Trans. R. Soc. London, Ser. A
185
,
213
245
(
1894
).
3.
D.
Moore
and
D.
Pullin
, “
On steady compressible flows with compact vorticity; the compressible Hill's spherical vortex
,”
J. Fluid Mech.
374
,
285
303
(
1998
).
4.
B. A.
Maicke
and
J.
Majdalani
, “
On the rotational compressible Taylor flow in injection-driven porous chambers
,”
J. Fluid Mech.
603
,
391
411
(
2008
).
5.
T.
Saad
and
J.
Majdalani
, “
On the Lagrangian optimization of wall-injected flows: From the Hart–McClure potential to the Taylor–Culick rotational motion
,”
Proc. R. Soc. London, Ser. A
466
,
331
362
(
2010
).
6.
T.
Saad
and
J.
Majdalani
, “
Extension of Kelvin's minimum energy theorem to flows with open regions
,” AIAA Paper 2010-4287,
2010
.
7.
B.
Wasistho
,
S.
Balachandar
, and
R.
Moser
, “
Compressible wall-injection flows in laminar, transitional, and turbulent regimes: Numerical prediction
,”
J. Spacecr. Rockets
41
,
915
924
(
2004
).
8.
J.
Majdalani
and
W.
Van Moorhem
, “
Improved time-dependent flowfield solution for solid rocket motors
,”
AIAA J.
36
,
241
248
(
1998
).
9.
F.
Chedevergne
,
G.
Casalis
, and
J.
Majdalani
, “
Direct numerical simulation and biglobal stability investigations of the gaseous motion in solid rocket motors
,”
J. Fluid Mech.
706
,
190
218
(
2012
).
10.
P.
Venugopal
,
R.
Moser
, and
F.
Najjar
, “
Direct numerical simulation of turbulence in injection-driven plane channel flows
,”
Phys. Fluids
20
,
105103
(
2008
).
11.
R. A.
Beddini
, “
Injection-induced flows in porous-walled ducts
,”
AIAA J.
24
,
1766
1773
(
1986
).
12.
J.
Sabnis
,
H.
Gibeling
, and
H.
McDonald
, “
Navier-Stokes analysis of solid propellant rocket motor internal flows
,”
J. Propul. Power
5
,
657
664
(
1989
).
13.
T.
Liou
and
W.
Lien
, “
Numerical simulations of injection-driven flows in a two-dimensional nozzleless solid-rocket motor
,”
J. Propul. Power
11
,
600
606
(
1995
).
14.
J. C.
Traineau
,
P.
Hervat
, and
P.
Kuentzmann
, “
Cold-flow simulation of a two-dimensional nozzleless solid-rocket motor
,” AIAA Paper No. 86-1447,
1986
.
15.
G.
Balakrishnan
,
A.
Liñan
, and
F. A.
Williams
, “
Rotational inviscid flow in laterally burning solid propellant rocket motors
,”
J. Propul. Power
8
,
1167
1176
(
1992
).
16.
G.
Balakrishnan
,
A.
Liñan
, and
F. A.
Williams
, “
Compressible effects in thin channels with injection
,”
AIAA J.
29
,
2149
2154
(
1991
).
17.
M.
Akiki
and
J.
Majdalani
, “
Improved integral form of the compressible flowfield in thin channels with injection
,”
AIAA J.
50
,
485
493
(
2012
).
18.
A.
Gany
and
I.
Aharon
, “
Internal ballistics considerations of nozzleless rocket motors
,”
J. Propul. Power
15
,
866
873
(
1999
).
19.
F.
McClure
,
R.
Hart
, and
R.
Cantrell
, “
Interaction between sound and flow: Stability of T-burners
,”
AIAA J.
1
,
586
590
(
1963
).
20.
G.
Taylor
, “
Fluid flow in regions bounded by porous surfaces
,”
Proc. R. Soc. London, Ser. A
234
,
456
475
(
1956
).
21.
F.
Culick
, “
Rotational axisymmetric mean flow and damping of acoustic waves in a solid propellant rocket
,”
AIAA J.
4
,
1462
1464
(
1966
).
22.
S.
Yuan
and
A.
Finkelstein
, “
Laminar pipe flow with injection and suction through a porous wall
,”
Trans. ASME: J. Appl. Mech.
78
,
719
724
(
1956
).
23.
J.
Majdalani
and
T.
Saad
, “
The Taylor-Culick profile with arbitrary headwall injection
,”
Phys. Fluids
19
,
093601
(
2007
).
24.
V. N.
Kurdyumov
, “
Viscous and inviscid flows generated by wall-normal injection into a cylindrical cavity with a headwall
,”
Phys. Fluids
20
,
123602
(
2008
).
25.
O. C.
Sams
,
J.
Majdalani
, and
T.
Saad
, “
Mean flow approximations for solid rocket motors with tapered walls
,”
J. Propul. Power
23
,
445
456
(
2007
).
26.
V.
Kurdyumov
, “
Steady flows in the slender, noncircular, combustion chambers of solid propellants rockets
,”
AIAA J.
44
,
2979
2986
(
2006
).
27.
J.
Majdalani
,
A.
Vyas
, and
G.
Flandro
, “
Higher mean-flow approximation for a solid rocket motor with radially regressing walls
,”
AIAA J.
40
,
1780
1788
(
2002
).
28.
J.
Majdalani
,
A.
Vyas
, and
G.
Flandro
, “
Erratum on higher mean-flow approximation for a solid rocket motor with radially regressing walls
,”
AIAA J.
47
,
286
286
(
2009
).
29.
C.
Zhou
and
J.
Majdalani
, “
Improved mean-flow solution for slab rocket motors with regressing walls
,”
J. Propul. Power
18
,
703
711
(
2002
).
30.
H.
Xu
,
Z.
Lin
,
S.
Liao
,
J.
Wu
, and
J.
Majdalani
, “
Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls
,”
Phys. Fluids
22
,
053601
(
2010
).
31.
C.
Berbente
,
S.
Dănăilă
, and
S.
Berbente
, “
Analytic solutions for axisymmetric incompressible flows with wall injection and regression
,”
P. Romanian Acad. A
12
,
221
229
(
2011
).
32.
R.
Hart
and
F.
McClure
, “
Combustion instability: Acoustic interaction with a burning propellant surface
,”
J. Chemical Phys.
30
,
1501
1514
(
1959
).
33.
R.
Hart
and
F.
McClure
, “
Theory of acoustic instability in solid propellant rocket combustion
,”
Int. Symp. Combust.
10
,
1047
1066
(
1965
).
34.
F.
McClure
,
R.
Hart
, and
J.
Bird
, “
Acoustic resonance in solid propellant rockets
,”
J. Appl. Phys.
31
,
884
896
(
1960
).
35.
R. H.
Cantrell
,
R. W.
Hart
, and
F. T.
McClure
, “
Acoustic energy losses in rocket-engine cavities
,”
J. Acoust. Soc. Am.
35
,
773
773
(
1963
).
36.
R.
Hart
and
R.
Cantrell
, “
Amplification and attenuation of sound by burning propellants
,”
AIAA J.
1
,
398
404
(
1963
).
37.
R. H.
Cantrell
and
R. W.
Hart
, “
Interaction between sound and flow in acoustic cavities: Mass, momentum, and energy considerations
,”
J. Acoust. Soc. Am.
36
,
697
706
(
1964
).
38.
R.
Hart
,
J.
Bird
,
R.
Cantrell
, and
F.
McClure
, “
Nonlinear effects in instability of solid-propellant rocket motors
,”
AIAA J.
2
,
1270
1273
(
1964
).
39.
G.
Flandro
and
J.
Majdalani
, “
Aeroacoustic instability in rockets
,”
AIAA J.
41
,
485
497
(
2003
).
40.
S.
Fischbach
,
J.
Majdalani
, and
G.
Flandro
, “
Acoustic instability of the slab rocket motor
,”
J. Propul. Power
23
,
146
157
(
2007
).
41.
J.
Majdalani
,
G. A.
Flandro
, and
S. R.
Fischbach
, “
Some rotational corrections to the acoustic energy equation in injection-driven enclosures
,”
Phys. Fluids
17
,
074102
(
2005
).
42.
J.
Majdalani
,
S.
Fischbach
, and
G.
Flandro
, “
Improved energy normalization function in rocket motor stability calculations
,”
Aerosp. Sci. Technol.
10
,
495
500
(
2006
).
43.
G.
Flandro
,
S.
Fischbach
, and
J.
Majdalani
, “
Nonlinear rocket motor stability prediction: Limit amplitude, triggering, and mean pressure shift
,”
Phys. Fluids
19
,
094101
(
2007
).
44.
J.
Majdalani
and
M.
Akiki
, “
Rotational and quasiviscous cold flow models for axisymmetric hybrid propellant chambers
,”
ASME J. Fluids Eng.
132
,
101202
(
2010
).
45.
J.
Majdalani
, “
Analytical Models for Hybrid Rockets
,” in
Fundamentals of Hybrid Rocket Combustion and Propulsion
, edited by
K.
Kuo
and
M J
Chiaverini
(
AIAA Progress in Astronautics and Aeronautics
,
Washington, DC
,
2007
), pp.
207
246
.
46.
W. A.
Khan
,
J. R.
Culham
, and
M. M.
Yovanovich
, “
Analytical study of heat transfer from circular cylinder in liquid metals
,”
Heat Mass Trans.
42
,
1017
1023
(
2006
).
47.
J.
Majdalani
, “
Reply to Robert L. Glick's comment: Physicality of core flow models in rocket motors
,”
J. Propul. Power
19
,
156
159
(
2003
).
48.
J.
Majdalani
,
G.
Flandro
, and
T.
Roh
, “
Convergence of two flowfield models predicting a destabilizing agent in rocket combustion
,”
J. Propul. Power
16
,
492
497
(
2000
).
49.
R. L.
Bayt
,
A. A.
Ayon
, and
K. S.
Breuer
, “
A performance evaluation of MEMS-based micronozzles
,” AIAA Paper No. 97-3169,
1997
.
50.
L.
Ren
,
D.
Sinton
, and
D.
Li
, “
Numerical simulation of microfluidic injection processes in crossing microchannels
,”
J. Micromech. Microeng.
13
,
739
747
(
2003
).
51.
A. H.
Shapiro
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
(
Ronald
,
1953
).
52.
S.
Yuan
, “
Further investigation of laminar flow in channels with porous walls
,”
J. Appl. Phys.
27
,
267
269
(
1956
).
53.
J.
Sellars
, “
Laminar flow in channels with porous walls at high suction Reynolds numbers
,”
J. Appl. Phys.
26
,
489
490
(
1955
).
54.
R.
Terrill
and
P.
Thomas
, “
On laminar flow through a uniformly porous pipe
,”
Appl. Sci. Res.
21
,
37
67
(
1969
).
55.
T.
Saad
and
J.
Majdalani
, “
Rotational flowfields in porous channels with arbitrary headwall injection
,”
J. Propul. Power
25
,
921
929
(
2009
).
You do not currently have access to this content.