Self-similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one-dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form ρ(r, θ, ϕ) = r−ω[1 + σF(θ, ϕ)], where ω > 3 and σ ≪ 1. Analytical solutions are obtained by expanding the arbitrary function F(θ, ϕ) in spherical harmonics. We compare our results with two-dimensional numerical simulations, and find good agreement.

1.
B. C.
Koo
and
C. F.
McKee
, “
Dynamics of adiabatic blast waves in media of finite mass
,”
Astrophys. J.
354
,
513
528
(
1990
).
2.
R. A.
Chevalier
, “
The hydrodynamics of Type II supernovae
,”
Astrophys. J.
207
,
872
887
(
1976
).
3.
L. I.
Sedov
, “
Propagation of strong blast waves
,”
Prikl. Mat. Mekh.
10
,
245
250
(
1946
).
4.
J. von
Neumann
, “
Blast waves
,” in
Collected Works
, edited by
A. H.
Taub
(
Pergamon
,
New York
,
1963
), Vol. 6, p.
219
.
5.
G. I.
Taylor
, “
The formation of a blast wave by a very intense explosion. I. Theoretical discussion
,”
Proc. R. Soc. London
201
(
1065
),
159
174
(
1950
).
6.
E.
Waxman
and
D.
Shvarts
, “
Second-type self-similar solutions to the strong explosion problem
,”
Phys. Fluids
5
,
1035
1046
(
1993
).
7.
R. D.
Blandford
and
C. F.
McKee
, “
Fluid dynamics of relativistic blast waves
,”
Phys. Fluids
19
,
1130
1138
(
1976
).
8.
P.
Best
and
R.
Sari
, “
Second-type self-similar solutions to the ultrarelativistic strong explosion problem
,”
Phys. Fluids
12
,
3029
3035
(
2000
).
9.
R.
Sari
, “
First and second type self-similar solutions of implosions and explosions containing ultrarelativistic shocks
,”
Phys. Fluids
18
,
027106
(
2006
);
10.
M.
Pan
and
R.
Sari
, “
Self-similar solutions for relativistic shocks emerging from stars with polytropic envelopes
,”
Astrophys. J.
643
,
416
422
(
2006
);
11.
Y. B.
Zel'Dovich
and
Y. P.
Raizer
, in
Physics of Shock Waves and High-temperature Hydrodynamic Phenomena
, edited by
W. D.
Hayes
and
R. F.
Probstein
(
Academic
,
New York
,
1967
).
12.
D.
Ryu
and
E. T.
Vishniac
, “
The growth of linear perturbations of adiabatic shock waves
,”
Astrophys. J.
313
,
820
841
(
1987
).
13.
J.
Goodman
, “
Convective instability of hollow Sedov-Taylor blast waves
,”
Astrophys. J.
358
,
214
228
(
1990
).
14.
R. A.
Chevalier
, “
The stability of an accelerating shock wave in an exponential atmosphere
,”
Astrophys. J.
359
,
463
468
(
1990
).
15.
R.
Sari
,
E.
Waxman
, and
D.
Shvarts
, “
Shock wave stability in steep density gradients
,”
Astrophys. J., Suppl. Ser.
127
,
475
479
(
2000
).
16.
D.
Kushnir
,
E.
Waxman
, and
D.
Shvarts
, “
The stability of decelerating shocks revisited
,”
Astrophys. J.
634
,
407
418
(
2005
);
17.
V.
Simonsen
and
J.
Meyer-Ter-Vehn
, “
Self-similar solutions in gas dynamics with exponential time dependence
,”
Phys. Fluids
9
,
1462
1469
(
1997
).
18.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1987
).
19.
D.
Kushnir
and
E.
Waxman
, “
Closing the gap in the solutions of the strong explosion problem: An expansion of the family of second-type self-similar solutions
,”
Astrophys. J.
723
,
10
19
(
2010
);
e-print arXiv:1002.3869 [astro-ph.HE].
20.
J. P.
Cox
,
Theory of Stellar Pulsation
(
Princeton University Press
,
NJ
,
1980
), p.
393
.
21.
Y.
Oren
and
R.
Sari
, “
Discrete self-similarity in type-II strong explosions
,”
Phys. Fluids
21
,
056101
(
2009
);
22.
A.
Mignone
,
G.
Bodo
,
S.
Massaglia
,
T.
Matsakos
,
O.
Tesileanu
,
C.
Zanni
, and
A.
Ferrari
, “
PLUTO: A numerical code for computational astrophysics
,”
Astrophys. J., Suppl. Ser.
170
,
228
242
(
2007
);
You do not currently have access to this content.