Simulations of converging spherical shock waves propagating through a region of compressible isotropic turbulence are carried out. Both converging and reflected phases of the shock are studied. Effect of the reflected phase of the shock is found to be quite different from the expanding shock in the Taylor blast wave-turbulence interaction problem. Vorticity and turbulent kinetic energy are amplified due to passage of the shock. Similar to the latter problem, the vorticity-dilatation term is primarily responsible for the observed behavior. This is confirmed through Eulerian and Lagrangian statistics. Transverse vorticity amplification is compared with linear planar shock-turbulence theory. The smallest eddies, represented by the Kolmogorov scale, decrease in size after passing through the converging shock and this is shown to be related to a decrease in kinematic viscosity and increase in dissipation behind the converging shock. Distortion of the shock due to turbulence is also investigated and quantified. Turbulence also affects maximum compression achieved at the point of shock reflection, when the shock radius is at a minimum. This decrease in compression is quantified by comparing with pure shock simulations.

1.
A.
Bhagatwala
and
S. K.
Lele
, “
Interaction of a Taylor blast wave with isotropic turbulence
,”
Phys. Fluids
23
,
035103
(
2011
).
2.
G.
Guderley
, “
Starke kugelige und zylinderische Verdichtungsstoesse in der Naehe des Kugelmittelpunktes bzw. der Zylinderachse
,”
Luftfahrforschung
19
,
302
(
1942
).
3.
R. F.
Chisnell
, “
The motion of a shock wave in a channel with application to cylindrical and spherical shock waves
,”
J. Fluid. Mech.
2
,
286
(
1957
).
4.
R. F.
Chisnell
, “
An analytic description of converging shock waves
,”
J. Fluid. Mech.
354
,
357
(
1998
).
5.
N. F.
Ponchaut
,
H. G.
Hornung
,
D. I.
Pullin
, and
C. A.
Mouton
, “
On imploding cylindrical and spherical shock waves in a perfect gas
,”
J. Fluid. Mech.
560
,
103
(
2006
).
6.
M.
Van Dyke
and
A. J.
Guttmann
, “
The converging shock wave from a spherical or cylindrical piston
,”
J. Fluid. Mech.
120
,
451
(
1982
).
7.
R. B.
Payne
, “
A numerical method for a converging cylindrical shock
,”
J. Fluid Mech.
2
,
185
(
1957
).
8.
P. L.
Sachdev
,
Shock Waves and Explosions
(
Chapman & Hall/CRC
,
2004
).
9.
G. A.
Sod
, “
A survey of several finite-difference methods for systems of nonlinear hyperbolic conservation laws
,”
J. Comput. Phys.
27
,
1
(
1978
).
10.
T.
Colonius
and
H.
Ran
, “
A super-grid scale model for simulating compressible flow on unbounded domains
,”
J. Comput. Phys.
182
,
191
(
2002
).
11.
A. W.
Cook
, “
Artificial fluid properties for large-eddy simulation of compressible turbulent mixing
,”
Phys. Fluids
19
,
055103
(
2007
).
12.
A.
Bhagatwala
and
S. K.
Lele
, “
A modified artificial viscosity approach for compressible turbulence simulations
,”
J. Comput. Phys.
228
,
4965
(
2009
).
13.
E.
Johnsen
,
J.
Larsson
,
A.
Bhagatwala
,
W. H.
Cabot
,
P.
Moin
,
B. J.
Olson
,
P. S.
Rawat
,
S. K.
Shankar
,
B.
Sjögreen
,
H. C.
Yee
,
X.
Zhong
, and
S. K.
Lele
, “
Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves
,”
J. Comput. Phys.
229
,
1213
(
2009
).
14.
C. C.
Lui
, “
A numerical investigation of shock-associated noise
,” Ph.D. dissertation,
Stanford University
,
2004
.
15.
F. Q.
Hu
,
M. Y.
Hussaini
, and
J. L.
Manthey
, “
Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics
,”
J. Comput. Phys.
124
,
177
(
1996
).
16.
A. G.
Kravchenko
and
P.
Moin
, “
On the effect of numerical errors in large eddy simulations of turbulent flows
,”
J. Comput. Phys.
131
,
310
(
1997
).
17.
P.
Schlatter
,
N. A.
Adams
, and
L.
Kleiser
, “
A windowing method for periodic inflow/outflow boundary treatment of non-periodic flows
,”
J. Comput. Phys.
206
,
505
(
2005
).
18.
J. R.
Ristorcelli
and
G. A.
Blaisdell
, “
Consistent initial conditions for DNS of compressible turbulence
,”
Phys. Fluids
9
,
4
(
1997
).
19.
H. W.
Liepmann
and
A.
Roshko
,
Elements of Gasdynamics
(
Wiley
,
New York
,
1957
).
20.
M.
Lombardini
, “
Richtmyer-Meshkov instability in converging geometries
,” Ph.D. dissertation,
Caltech
,
2008
.
21.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
22.
J.
Larsson
and
S. K.
Lele
, “
Direct numerical simulation of canonical shock/turbulence interaction
,”
Phys. Fluids
21
,
126101
(
2009
).
23.
S.
Lee
,
S. K.
Lele
, and
P.
Moin
, “
Interaction of isotropic turbulence with shock waves: effect of shock strength
,”
J. Fluid Mech.
340
,
225
(
1997
).
You do not currently have access to this content.