Capillarity-driven flows resulting from critical geometric wetting criterion are observed to yield significant shifts of the bulk fluid from one side of the container to the other during “zero gravity” experiments. For wetting fluids, such bulk shift flows consist of advancing and receding menisci sometimes separated by secondary capillary flows such as rivulet-like flows along gaps. Here we study the mean curvature of an advancing meniscus in hopes of approximating a critical boundary condition for fluid dynamics solutions. It is found that the bulk shift flows behave as if the bulk menisci are either “connected” or “disconnected.” For the connected case, an analytic method is developed to calculate the mean curvature of the advancing meniscus in an asymptotic sense. In contrast, for the disconnected case the method to calculate the mean curvature of the advancing and receding menisci uses a well-established procedure. Both disconnected and connected bulk shifts can occur as the first tier flow of more complex compound capillary flows. Preliminary comparisons between the analytic method and the results of drop tower experiments are encouraging.

1.
M. M.
Weislogel
and
S.
Lichter
, “
Capillary flow in an interior corner
,”
J. Fluid Mech.
373
,
349
378
(
1998
).
2.
M. M.
Weislogel
, “
Capillary flow in containers of polygonal section
,”
AIAA J.
39
,
2320
2326
(
2001
).
3.
T.
Cubard
and
C.-M.
Ho
, “
Transport of bubbles in square microchannels
,”
Phys. Fluids
16
,
4575
4585
(
2004
).
4.
Y.
Chen
and
S. H.
Collicott
, “
Experimental study on the capillary flow in a vane-wall gap geometry
,”
AIAA J.
43
,
2395
2403
(
2005
).
5.
D. A.
Bolleddula
,
Y.
Chen
,
B.
Semerjian
,
N.
Tavan
, and
M. M.
Weislogel
, “
Compound capillary flows in complex containers: drop tower test results
,”
Microgravity Sci. Technol.
22
,
475
485
(
2010
).
6.
M. M.
Weislogel
,
R.
Jenson
,
Y.
Chen
,
S. H.
Collicott
,
J.
Klatte
, and
M.
Dreyer
, “
The capillary flow experiments aboard the International Space Station: Status
,”
Acta Astronaut.
65
,
861
869
(
2009
).
7.
A.
de Lazzer
,
D.
Langbein
,
M.
Dreyer
, and
H. J.
Rath
, “
Mean curvature of liquid surfaces in cylindrical containers of arbitrary cross-section
,”
Microgravity Sci. Technol.
IX
,
208
219
(
1996
).
8.
M. M.
Weislogel
,
J. A.
Baker
, and
R. M.
Jenson
, “
Quasi-steady capillary-driven flows in slender containers with interior edges
,”
J. Fluid Mech.
685
,
271
305
(
2011
).
9.
R.
Finn
and
R. W.
Neel
, “
C-singular solutions of the capillary problem
,”
J. Reine Angew. Math.
512
,
1
25
(
1999
).
10.
M. M.
Weislogel
and
S. H.
Collicott
, “
Capillary rewetting of vaned containers: Spacecraft tank rewetting following thrust resettling
,”
AIAA J.
42
,
2551
2561
(
2004
).
11.
Y.
Chen
,
M. M.
Weislogel
, and
C. L.
Nardin
, “
Capillary-driven flows along rounded interior corners
,”
J. Fluid Mech.
566
,
235
271
(
2006
).
12.
N.
Ichikawa
,
K.
Hosokawa
, and
R.
Maeda
, “
Interface motion of a capillary-driven flow in rectangular microchannel
,”
J. Colloid Interface Sci.
280
,
155164
(
2004
).
13.
P.
Concus
and
R.
Finn
, “
On capillary free surfaces in the absence of gravity
,”
Acta Math.
132
,
177
198
(
1974
).
14.
R.
Finn
, “
A subsidiary variational problem and existence criteria for capillary surfaces
,”
J. Reine Angew. Math.
353
,
196
214
(
1984
).
15.
R.
Finn
,
Equilibrium Capillary Surfaces
,
A Series of Comprehensive Studies in Mathematics Vol. 284
(
Springer-Verlag
,
New York
,
1986
), Chaps. 6 and 7.
16.
P.
Concus
and
R.
Finn
, “
Continuous and discontinuous disappearance of capillary surfaces
,” in
Variational Methods for Free Surface Interfaces
, edited by
P.
Concus
and
R.
Finn
(
Springer-Verlag
,
Berlin
,
1987
), pp.
197
204
.
17.
J.
Lekan
,
D.
Gotti
,
A. J.
Jenkins
,
J. C.
Owens
, and
M. R.
Johnston
, “
Users guide for the 2.2 second drop tower of the NASA Lewis Research Center
,” Technical Memorandum No. 107090 (
National Aeronautics and Space Administration
,
1996
).
18.
M. M.
Weislogel
, “
Steady spontaneous capillary flow in partially coated tubes
,”
AIChE J.
43
,
645
654
(
1997
).
19.
N.
Tavan
, “
Critical geometric wetting phenomena: study of capillary driven flow in the CFE Vane-Gap experiment aboard the International Space Station
,” Master's thesis (
Portland State University
, Portland, OR,
2009
).
20.
P.
Concus
and
R.
Finn
, “
On the behavior of a capillary surface in a wedge
,”
Proc. Natl. Acad. Sci. U.S.A.
63
,
292
299
(
1969
).
21.
P.
Concus
and
R.
Finn
, “
Capillary wedges revisited
,”
SIAM J. Math. Anal.
27
,
56
69
(
1996
).
22.
Y.
Chen
and
S. H.
Collicott
, “
Investigation of the symmetric wetting behavior of vane-wall gaps in propellant tanks
,”
AIAA J.
42
,
305
314
(
2004
).
23.
Y.
Chen
,
B.
Schaeffer
,
M. M.
Weislogel
, and
G.
Zimmerli
, “
Introducing SE-FIT: Surface Evolver - Fluid Interface Tool for studying capillary surfaces
,”
AIAA
Paper 2011-1319,
2011
.
24.
K. A.
Brakke
, “
The surface evolver
,”
Exp. Math.
1
,
141
165
(
1992
).
25.
R.
Hoffman
, “
A study of the advancing interface. I. Interface shape in liquid-gas system
,”
J. Colloid Interface Sci.
50
,
228
241
(
1975
).
26.
M. M.
Weislogel
, “
Capillary flow in an interior corner
,” Ph.D. dissertation (
Northwestern University
,
1996
).
27.
Y.
Chen
,
R. M.
Jenson
,
M. M.
Weislogel
, and
S.
Collicott
, “
Capillary wetting analysis of the CFE Vane-Gap geometry
,”
AIAA
Paper 2008-817,
2008
.
You do not currently have access to this content.