Abdominal aortic aneurysm (AAA) is characterized by disturbed blood flow patterns that are hypothesized to contribute to disease progression. The transport topology in six patient-specific abdominal aortic aneurysms was studied. Velocity data were obtained by image-based computational fluid dynamics modeling, with magnetic resonance imaging providing the necessary simulation parameters. Finite-time Lyapunov exponent (FTLE) fields were computed from the velocity data, and used to identify Lagrangian coherent structures (LCS). The combination of FTLE fields and LCS was used to characterize topological flow features such as separation zones, vortex transport, mixing regions, and flow impingement. These measures offer a novel perspective into AAA flow. It was observed that all aneurysms exhibited coherent vortex formation at the proximal segment of the aneurysm. The evolution of the systolic vortex strongly influences the flow topology in the aneurysm. It was difficult to predict the vortex dynamics from the aneurysm morphology, motivating the application of image-based flow modeling.

1.
A. V.
Salsac
,
S. R.
Sparks
,
J. M.
Chomaz
, and
J. C.
Lasheras
, “
Evolution of the wall shear stresses during the progressive enlargement of symmetric abdominal aortic aneurysms
,”
J. Fluid Mech.
560
,
19
52
(
2006
).
2.
G. Y.
Suh
,
A. S.
Les
,
A. S.
Tenforde
,
S. C.
Shadden
,
R. L.
Spilker
,
J. J.
Yeung
,
C. P.
Cheng
,
R. J.
Herfkens
,
R. L.
Dalman
, and
C. A.
Taylor
, “
Quantification of particle residence time in abdominal aortic aneurysms using magnetic resonance imaging and computational fluid dynamics
,”
Ann. Biomed. Eng.
39
,
864
883
(
2011
).
3.
A. S.
Les
,
S. C.
Shadden
,
C. A.
Figueroa
,
J. M.
Park
,
M. M.
Tedesco
,
R. J.
Herfkens
,
R. L.
Dalman
, and
C. A.
Taylor
, “
Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics
,”
Ann. Biomed. Eng.
38
,
1288
1313
(
2010
).
4.
D. A.
Vorp
, “
Biomechanics of abdominal aortic aneurysm
,”
J. Biomech.
40
(
9
),
1887
1902
(
2007
).
5.
D. A.
Vorp
,
P. C.
Lee
,
D. H. J.
Wang
,
M. S.
Makaroun
,
E. M.
Nemoto
,
S.
Ogawa
, and
M. W.
Webster
, “
Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening
,”
J. Vasc. Surg.
34
(
2
),
291
299
(
2001
).
6.
D.
Bluestein
,
L.
Niu
,
R. T.
Schoephoerster
, and
M. K.
Dewanjee
, “
Steady flow in an aneurysm model: Correlation between fluid dynamics and blood platelet deposition
,”
J. Biomech. Eng.
118
(
3
),
280
286
(
1996
).
7.
J. C.
Lasheras
, “
The biomechanics of arterial aneurysms
,”
Annu. Rev. Fluid Mech.
39
,
293
319
(
2007
).
8.
J. D.
Humphrey
and
C. A.
Taylor
, “
Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models
,”
Annu. Rev. Biomed. Eng.
10
,
221
246
(
2008
).
9.
T. W.
Taylor
and
T.
Yamaguchi
, “
Three-dimensional simulation of blood flow in an abdominal aortic aneurysm—Steady and unsteady flow cases
,”
J. Biomech. Eng.
116
(
1
),
89
97
(
1994
).
10.
E. A.
Finol
,
K.
Keyhani
, and
C. H.
Amon
, “
The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions
,”
J. Biomech. Eng.
125
(
2
),
207
217
(
2003
).
11.
V.
Deplano
,
Y.
Knapp
,
E.
Bertrand
, and
E.
Gaillard
, “
Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm
,”
J. Biomech.
40
,
2406
2413
(
2007
).
12.
R. A.
Peattie
,
T. J.
Riehle
, and
E. I.
Bluth
, “
Pulsatile flow in fusiform models of abdominal aortic aneurysms: Flow fields, velocity patterns and flow-induced wall stresses
,”
J. Biomech. Eng.
126
(
4
),
438
446
(
2004
).
13.
A. V.
Salsac
,
S. R.
Sparks
, and
J. C.
Lasheras
, “
Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysms
,”
Ann. Vasc. Surg.
18
(
1
),
14
21
(
2004
).
14.
C. J.
Egelhoff
,
R. S.
Budwig
,
D. F.
Elger
,
T. A.
Khraishi
, and
K. H.
Johansen
, “
Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions
,”
J. Biomech.
32
(
12
),
1319
1329
(
1999
).
15.
E. A.
Finol
and
C. H.
Amon
, “
Flow dynamics in anatomical models of abdominal aortic aneurysms: Computational analysis of pulsatile flow
,”
Acta Cient. Venez.
54
(
1
),
43
49
(
2003
).
16.
Y.
Papaharilaou
,
J. A.
Ekaterinaris
,
E.
Manousaki
, and
A. N.
Katsamouris
, “
A decoupled fluid structure approach for estimating wall stress in abdominal aortic aneurysms
,”
J. Biomech.
40
(
2
),
367
377
(
2007
).
17.
Ch.
Stamatopoulos
,
D. S.
Mathioulakis
,
Y.
Papaharilaou
, and
A.
Katsamouris
, “
Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model
,”
Exp. Fluids
50
,
1695
1709
(
2011
).
18.
J.
Biasetti
,
T. C.
Gasser
,
M.
Auer
,
U.
Hedin
, and
F.
Labruto
, “
Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism
,”
Ann. Biomed. Eng.
38
,
380
390
(
2010
).
19.
C.
Basciano
,
C.
Kleinstreuer
,
S.
Hyun
, and
E. A.
Finol
, “
A relation between near-wall particle-hemodynamics and onset of thrombus formation in abdominal aortic aneurysms
,”
Ann. Biomed. Eng.
39
,
2010
2026
(
2011
).
20.
E. O.
Kung
,
A. S.
Les
,
F.
Medina
,
R. B.
Wicker
,
M. V.
McConnell
, and
C. A.
Taylor
, “
In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions
,”
J. Biomech. Eng.
133
(
4
),
041003
(
2011
).
21.
G. Y.
Suh
,
A. S.
Tenforde
,
S. C.
Shadden
,
R. L.
Spilker
,
C. P.
Cheng
,
R. J.
Herfkens
,
R. L.
Dalman
, and
C. A.
Taylor
, “
Hemodynamic changes in abdominal aortic aneurysms with increasing exercise intensity using MR exercise imaging and image-based computational fluid dynamics
,”
Ann. Biomed. Eng.
39
,
2186
2202
(
2011
).
22.
S. C.
Shadden
and
S.
Hendabadi
, “
Potential fluid mechanic pathways of platelet activation
,”
Biomech. Model. Mechanobiol.
(in press).
23.
S. C.
Shadden
and
C. A.
Taylor
, “
Characterization of coherent structures in the cardiovascular system
,”
Ann. Biomed. Eng.
36
,
1152
1162
(
2008
).
24.
Z.
Xu
,
N.
Chen
,
S. C.
Shadden
,
J. E.
Marsden
,
M. M.
Kamocka
,
E. D.
Rosen
, and
M.
Alber
, “
Study of blood flow impact on growth of thrombi using a multiscale model
,”
Soft Matter
5
,
769
779
(
2009
).
25.
J.
Vétel
,
A.
Garon
, and
D.
Pelletier
, “
Lagrangian coherent structures in the human carotid artery bifurcation
,”
Exp. Fluids
46
,
1067
1079
(
2009
).
26.
S. C.
Shadden
,
M.
Astorino
, and
J. F.
Gerbeau
, “
Computational analysis of an aortic valve jet with Lagrangian coherent structures
,”
Chaos
20
,
017512
(
2010
).
27.
M.
Astorino
,
J.
Hammers
,
S. C.
Shadden
, and
J. F.
Gerbeau
, “
A robust and efficient valve model based on resistive immersed surfaces
,”
Int. J. Numer. Meth. Biomed. Eng.
(in press).
28.
J. P.
Schmidt
,
S. L.
Delp
,
M. A.
Sherman
,
C. A.
Taylor
,
V. S.
Pande
, and
R. B.
Altman
, “
The simbios national center: Systems biology in motion
,”
Proc. IEEE
96
(
8
),
1266
1280
(
2008
).
29.
N.
Wilson
,
F. R.
Arko
, and
C. A.
Taylor
, “
Patient-specific operative planning for aorto-femoral reconstruction procedures
,”
Lect. Notes Comput. Sci.
3217
,
422
429
(
2004
).
30.
I. E.
Vignon-Clementel
,
C. A.
Figueroa
,
K. E.
Jansen
, and
C. A.
Taylor
, “
Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries
,”
Comput. Methods Appl. Mech. Eng.
195
(
29–32
),
3776
3796
(
2006
).
31.
A. N.
Brooks
and
T. J. R.
Hughes
, “
Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations
,”
Comput. Methods Appl. Mech. Eng.
32
(
1-3
),
199
259
(
1982
).
32.
C. H.
Whiting
and
K. E.
Jansen
, “
A stabilized finite element method for the incompressible Navier-Stokes equations using a hierarchical basis
,”
Int. J. Numer. Methods Fluids
35
(
1
),
93
116
(
2001
).
33.
A.
Arzani
,
P.
Dyverfeldt
,
T.
Ebbers
, and
S. C.
Shadden
, “
In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation
,”
Ann. Biomed. Eng.
40
(
4
),
860
870
(
2011
).
34.
E. Di
Martino
,
S.
Mantero
,
F.
Inzoli
,
G.
Melissano
,
D.
Astore
,
R.
Chiesa
, and
R.
Fumero
, “
Biomechanics of abdominal aortic aneurysm in the presence of endoluminal thrombus: Experimental characterisation and structural static computational analysis
,”
Eur. J. Vasc. Endovasc Surg.
15
(
4
),
290
299
(
1998
).
35.
P.
Moireau
,
N.
Xiao
,
M.
Astorino
,
C. A.
Figueroa
,
D.
Chapelle
,
C. A.
Taylor
, and
J. F.
Gerbeau
, “
External tissue support and fluid–structure simulation in blood flows
,”
Biomech. Model. Mechanobiol.
11
,
1
18
(
2012
).
36.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Physica D
147
(
3-4
),
352
370
(
2000
).
37.
S. C.
Shadden
, “
Lagrangian coherent structures
,” in
Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents
, edited by
R.
Grigoriev
(
Wiley VCH
,
Germany
,
2011
), Chap. 3.
38.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Physica D
212
(
3-4
),
271
304
(
2005
).
39.
F.
Lekien
,
S. C.
Shadden
, and
J. E.
Marsden
, “
Lagrangian coherent structures in n-dimensional systems
,”
J. Math. Phys.
48
,
065404
(
2007
).
40.
S. C.
Shadden
,
K.
Katija
,
M.
Rosenfeld
,
J. E.
Marsden
, and
J. O.
Dabiri
, “
Transport and stirring induced by vortex formation
,”
J. Fluid Mech.
593
,
315
332
(
2007
).
41.
S. C.
Shadden
,
J. O.
Dabiri
, and
J. E.
Marsden
, “
Lagrangian analysis of fluid transport in empirical vortex ring flows
,”
Phys. Fluids
18
(
4
),
047105
(
2006
).
42.
C.
O’Farrell
and
J. O.
Dabiri
, “
A Lagrangian approach to identifying vortex pinch-off
,”
Chaos
20
(
1
),
017513
(
2010
).
43.
L. D.
Jou
and
M. E.
Mawad
, “
Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery
,”
Med. Biol. Eng. Comput.
49
,
891
899
(
2011
).
44.
J.
Biasetti
,
F.
Hussain
, and
T. C.
Gasser
, “
Blood flow and coherent vortices in the normal and aneurysmatic aortas: A fluid dynamical approach to intra-luminal thrombus formation
,”
J. R. Soc., Interface
8
(
63
),
1449
1461
(
2011
).
45.
K. M.
Khanafer
,
P.
Gadhoke
,
R.
Berguer
, and
J. L.
Bull
, “
Modeling pulsatile flow in aortic aneurysms: Effect of non-Newtonian properties of blood
,”
Biorheology
43
(
5
),
661
679
(
2006
).
You do not currently have access to this content.