We report experimental measurements of the flow in a cubic container submitted to a longitudinal libration, i.e., a rotation modulated in time. Velocity fields in a vertical and a horizontal plane are measured in the librating frame using a corotating particle image velocimetry system. When the libration frequency σ0 is smaller than twice the mean rotation rate, Ω0, inertial waves can propagate in the interior of the fluid. At arbitrary excitation frequencies σ0 < 2Ω0, the oscillating flow shows two contributions: (i) a basic flow induced by the libration motion, and (ii) inertial wave beams propagating obliquely upward and downward from the horizontal edges of the cube. In addition to these two contributions, inertial modes may also be excited at some specific resonant frequencies. We characterize in particular the resonance of the mode of lowest order compatible with the symmetries of the forcing, noted [2,1,+]. By comparing the measured flow fields to the expected inviscid inertial modes computed numerically [L. R. M. Maas, “On the amphidromic structure of inertial waves in rectangular parallelepiped,” Fluid Dyn. Res.33, 373 (2003)] https://doi.org/10.1016/j.fluiddyn.2003.08.003, we show that only a subset of inertial modes, matching the symmetries of the forcing, can be excited by the libration.

1.
H.
Greenspan
,
The Theory of Rotating Fluids
(
Cambridge University Press
,
London
,
1968
).
2.
J.
Pedlosky
,
Geophysical Fluid Dynamics
(
Springer-Verlag
,
Heidelberg
,
1987
).
3.
J.
Lighthill
,
Waves in Fluids
(
Cambridge University Press
,
London
,
1978
).
4.
A. D.
McEwan
, “
Inertial oscillations in a rotating fluid cylinder
,”
J. Fluid Mech.
40
,
603
639
(
1970
).
5.
K. K.
Zhang
,
X. H.
Liao
, and
P.
Earnshaw
, “
On inertial waves and oscillations in a rapidly rotating spheroid
,”
J. Fluid Mech.
504
,
1
40
(
2004
).
6.
O. M.
Phillips
, “
Energy transfer in rotating fluids by reflection of inertial waves
,”
Phys. Fluids
6
(
4
),
513
(
1963
).
7.
A. A. M.
Manders
and
L. R. M.
Maas
, “
Observations of inertial waves in a rectangular basin with one sloping boundary
,”
J. Fluid Mech.
493
,
59
(
2003
).
8.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge
,
1967
)
9.
L. R. M.
Maas
, “
On the amphidromic structure of inertial waves in rectangular parallelepiped
,”
Fluid Dyn. Res.
33
,
373
401
(
2003
).
10.
K. D.
Aldridge
and
A.
Toomre
, “
Axisymmetric inertial oscillations of a fluid in a rotating spherical container
,”
J. Fluid Mech.
37
,
307−323
(
1969
).
11.
M.
Rieutord
, “
Linear theory of rotating fluids using spherical harmonics. II. Time-periodic flows
,”
Geophys. Astrophys. Fluid Dyn.
59
,
185−208
(
1991
).
12.
A.
Tilgner
, “
Driven inertial oscillations in spherical shells
,”
Phys. Rev. E
59
,
1789−1794
(
1999
).
13.
J.
Noir
,
F.
Hemmerlin
,
J.
Wicht
,
S.
Baca
, and
J.
Aurnou
, “
An experimental and numerical study of librationally driven flow in planetary cores and subsurface oceans
,”
Phys. Earth Planet Inter.
173
,
141−152
(
2009
).
14.
M. A.
Calkins
,
J.
Noir
,
J. D.
Eldredge
, and
J. M.
Aurnou
, “
Axisymmetric simulations of libration-driven fluid dynamics in a spherical shell geometry
,”
Phys. Fluids
22
,
086602
(
2010
).
15.
F. H.
Busse
, “
Steady fluid flow in a precessing spheroidal shell
,”
J. Fluid Mech.
33
(
4
),
739
(
1968
).
16.
R. R.
Kerswell
, “
On the internal shear layers spawned by the critical regions in oscillatoray Ekman boundary layers
,”
J. Fluid Mech.
298
,
311
(
1995
).
17.
J.
Noir
,
D.
Jault
, and
P.
Cardin
, “
Numerical study of the motions within a slowly precessing sphere at low Ekman number
,”
J. Fluid Mech.
437
,
283
(
2001
).
18.
S. T.
Suess
, “
Viscous flow in a deformable rotating container
,”
J. Fluid Mech.
45
,
189−201
(
1971
).
19.
C.
Morize
,
M.
Le Bars
,
P.
Le Gal
, and
A.
Tilgner
, “
Experimental determination of zonal winds driven by tides
,”
Phys. Rev. Lett.
104
,
214501
(
2010
).
20.
W. V. R.
Malkus
, “
Precession of earth as cause of geomagnetism
,”
Science
160
,
259
(
1968
).
21.
A.
Tilgner
, “
Zonal wind driven by inertial modes
,”
Phys. Rev. Lett.
99
,
194501
(
2007
).
22.
S. B.
Dalziel
, “
Decay of rotating turbulence: Some particle tracking experiments
,”
Appl. Sci. Res.
49
,
217−244
(
1992
).
23.
G. P.
Bewley
,
D. P.
Lathrop
,
L. R. M.
Maas
, and
K. R.
Sreenivasan
, “
Inertial waves in rotating grid turbulence
,”
Phys. Fluids
19
,
071701
(
2007
).
24.
C.
Lamriben
,
P.-P.
Cortet
,
F.
Moisy
, and
L. R. M.
Maas
, “
Excitation of inertial modes in a closed grid turbulence experiment under rotation
,”
Phys. Fluids
23
,
015102
(
2011
).
25.
Y. Duguet,
J. F.
Scott
, and
L.
Le Penven
, “
Oscillatory jets and instabilities in a rotating cylinder
,”
Phys. Fluids
18
,
104104
(
2006
).
26.
DaVis, LaVision GmbH, Anna-Vandenhoeck-Ring 19, Goettingen, Germany.
27.
F.
Moisy
, PIVMat toolbox for Matlab, Laboratory FAST, University Paris-Sud, France.
28.
A.
Sauret
,
D.
Cébron
,
M.
Le Bars
, and
S.
Le Dizès
, “
Fluid flows in a librating cylinder
,”
Phys. Fluids
24
,
026603
(
2012
).
29.
K. S.
Peat
, “
Internal and inertial waves in a viscous rotating stratified fluid
,”
Appl. Sci. Res.
33
(
5–6
),
481
499
(
1977
).
30.
A.
Tilgner
, “
Oscillatory shear layers in source driven flows in an unbounded rotating fluid
,”
Phys. Fluids
12
,
1101
(
2000
).
31.
P.-P.
Cortet
,
C.
Lamriben
, and
F.
Moisy
, “
Viscous spreading of an inertial wave beam in a rotating fluid
,”
Phys. Fluids
22
,
086603
(
2010
).
32.
See supplementary material at http://dx.doi.org/10.1063/1.4731802 for movies of the experimental fields compared to the numerical inviscid modes.
33.
A.
Swart
,
L. R. M.
Maas
,
U.
Harlander
, and
A.
Manders
, “
Experimental observation of strong mixing due to internal wave focusing over sloping terrain
,”
Dyn. Atmosph. Oceans
50
,
16−34
(
2010
).
34.
I.
Tolstoy
,
Wave Propagation
(
McGraw-Hill
,
New York
,
1973
).

Supplementary Material

You do not currently have access to this content.