Solutal driven flow is studied for a binary solution submitted to solvent evaporation at the upper free surface. Evaporation induces an increase in the solute concentration close to the free surface and solutal gradients may induce a convective flow driven by buoyancy and/or surface tension. This problem is studied numerically, using several assumptions deduced from previous experiments on polymer solutions. The stability of the system is investigated as a function of the solutal Rayleigh and Marangoni numbers, the evaporative flux and the Schmidt number. The sensitivity of the thresholds to initial perturbations is analyzed. The effect of viscosity variation during drying is also investigated. At last numerical simulations are presented to study the competition between buoyancy and Marangoni effects in the nonlinear regime.

1.
P.
Colinet
,
J. C.
Legros
, and
M. G.
Verlade
,
Nonlinear Dynamics of Surface-Tension-Driven Instabilities
(
Wiley-VCH
,
Berlin
,
2001
).
2.
P.
Manneville
,
Dynamics of Spatio-Temporal Cellular Structures: Henri Bénard Centenary Review
,
Springer Tracts in Modern Physics
Vol.
207
(
Springer
,
2006
).
3.
D.
Merkt
and
M.
Bestehorn
, “
Bénard-Marangoni convection in a strongly evaporating fluid
,”
Physica D
185
,
196
208
(
2003
).
4.
C.
Moussy
,
G.
Lebon
, and
J.
Margerit
, “
Influence of evaporation on Bénard-Marangoni instability in a liquid-gas bilayer with a deformable interface
,”
Eur. Phys. J. B
40
,
327
335
(
2004
).
5.
O.
Ozen
and
R.
Narayanan
, “
The physics of evaporative and convective instabilities in bilayer systems
,”
Phys. Fluids
16
,
4644
4652
(
2004
).
6.
J.
Margerit
,
M.
Dondlinger
, and
P. C.
Dauby
, “
Improved 1.5-sided model for the weakly nonlinear study of Bénard-Marangoni instabilities in an evaporating liquid layer
,”
J. Colloid Interface Sci.
290
(
1
),
220
230
(
2005
).
7.
G.
Toussaint
,
H.
Bodiguel
,
F.
Doumenc
,
B.
Guerrier
, and
C.
Allain
, “
Experimental characterization of buoyancy- and surface tension-driven convection during the drying of a polymer solution
,”
Int. J. Heat Mass Transfer
51
,
4228
4237
(
2008
).
8.
A.
Vidal
and
A.
Acrivos
, “
Effect of nonlinear temperature profiles on onset of convection driven by surface tension gradients
,”
Ind. Eng. Chem. Fundam.
7
,
53
58
(
1968
).
9.
T. D.
Foster
, “
Stability of a homogeneous fluid cooled uniformly from above
,”
Phys. Fluids
8
,
1249
1257
(
1965
).
10.
F.
Doumenc
,
T.
Boeck
,
B.
Guerrier
, and
M.
Rossi
, “
Transient Rayleigh-Bénard-Marangoni convection due to evaporation: a linear non-normal stability analysis
,”
J. Fluid Mech.
648
,
521
539
(
2010
).
11.
O.
Touazi
,
E.
Chénier
,
F.
Doumenc
, and
B.
Guerrier
, “
Simulation of transient Rayleigh-Bénard-Marangoni convection induced by evaporation
,”
Int. J. Heat Mass Transfer
53
,
656
664
(
2010
).
12.
B.
Trouette
,
E.
Chénier
,
C.
Delcarte
, and
B.
Guerrier
, “
Numerical study of convection induced by evaporation in cylindrical geometry
,”
Eur. Phys. J. Special Topics
192
,
83
93
(
2011
).
13.
J. C.
Berg
,
M.
Boudart
, and
A.
Acrivos
, “
Natural convection in pools of evaporative liquids
,”
J. Fluid Mech.
24
,
721
735
(
1966
).
14.
P.
Colinet
,
L.
Joannes
,
C. S.
Iorio
,
B.
Haute
,
M.
Bestehorn
,
G.
Lebon
, and
J. C.
Legros
, “
Interfacial turbulence in evaporating liquids: theory and preliminary results of the ITEL-master 9 sounding rocket experiment
,”
Adv. Space Res.
32
(
2
),
119
127
(
2003
).
15.
H.
Mancini
and
D.
Maza
, “
Pattern formation without heating in an evaporative convection experiment
,”
Europhys. Lett.
66
(
6
),
812
818
(
2004
).
16.
V. M.
Ha
and
C. L.
Lai
, “
Onset of Marangony instability of a two-component evaporating droplet
,”
Int. J. Heat Mass Transfer
45
,
5143
5158
(
2002
).
17.
H.
Machrafi
,
A.
Rednikov
,
P.
Colinet
, and
P. C.
Dauby
, “
Bénard instabilities in a binary-liquid layer evaporating into an inert gas
,”
J. Colloid Interface Sci.
349
,
331
353
(
2010
).
18.
P. Y.
de Gennes
, “
Instabilities during the evaporation of a film: Non-glassy polymer + volatile solvent
,”
Eur. Phys. J. E
6
,
421
424
(
2001
).
19.
S.
Sakurai
,
C.
Furukawa
,
A.
Okutsu
,
A.
Myoshi
, and
S.
Nomura
, “
Control of mesh pattern of surface corrugation via rate of solvent evaporation in solution casting of polymer film in the presence of convection
,”
Polymer
43
,
3359
3364
(
2002
).
20.
N.
Bassou
and
Y.
Rharbi
, “
Role of Bénard-Marangoni instabilities during solvent evaporation in polymer surface corrugations
,”
Langmuir
25
,
624
632
(
2009
).
21.
F.
Doumenc
,
B.
Guerrier
, and
C.
Allain
, “
Mutual diffusion coefficient and vapor-liquid equilibrium data for the system PIB/Toluene
,”
J. Chem. Eng. Data
50
,
983
988
(
2005
).
22.
Y.
Gorand
,
F.
Doumenc
,
B.
Guerrier
, and
C.
Allain
, “
Instabilités de plissement lors du séchage de films polymères plans
,”
Rhéologie
3
,
22
29
(
2003
).
23.
V. C.
Regnier
,
P. C.
Dauby
, and
G.
Lebon
, “
Linear and nonlinear Rayleigh-Bénard-Marangoni instability with surface deformations
,”
Phys. Fluids
12
(
11
),
2787
2799
(
2000
).
24.
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
, “
An arbitrary Lagrangian-Eulerian computing method for all flow speeds
,”
J. Comput. Phys.
135
(
2
),
203
216
(
1997
)
C. W.
Hirt
,
A. A.
Amsden
, and
J. L.
Cook
,
J. Comput. Phys.
[reprinted from
14
(
3
),
227
253
(
1974
)].
25.
J.
Kim
and
P.
Moin
, “
Application of a fractional-step method to incompressible Navier-Stokes equations
,”
J. Comput. Phys.
59
(
2
),
308
323
(
1985
).
26.
B.
Trouette
, “
Instabilités de Rayleigh-Bénard-Marangoni induites par évaporation en régime transitoire-Application aux solutions polymères
,” Doctorat de l’Université Paris-Sud,
2010
.
27.
E.
Chénier
,
C.
Desceliers
,
C.
Delcarte
,
B.
Trouette
,
F.
Doumenc
, and
B.
Guerrier
, “
Sensitivity of diffusive-convective transition to the initial conditions in a transient Bénard-Marangoni problem
,” in
Proceedings of the International Heat Transfer Conference
,
Washington, DC
, August 8–13,
2010
(IHTC14-22600).
28.
J. V.
Wehausen
and
E. V.
Laitone
, “
Surface waves
,” in
Handbuch der Physiks
(
Springer
,
1960
).
You do not currently have access to this content.