We consider a solid plate being withdrawn from a bath of liquid which it does not wet. At low speeds, the meniscus rises below a moving contact line, leaving the rest of the plate dry. At a critical speed of withdrawal, this solution bifurcates into another branch via a saddle-node bifurcation: two branches exist below the critical speed, the lower branch is stable, the upper branch is unstable. The upper branch eventually leads to a solution corresponding to film deposition. We add the local analysis of the upper branch of the bifurcation to a previous analysis of the lower branch. We thus provide a complete description of the dynamical wetting transition in terms of matched asymptotic expansions.

1.
B. V.
Deryaguin
and
S. M.
Levi
,
Film Coating Theory
(
Focal
,
London
,
1964
).
2.
T. D.
Blake
and
K. J.
Ruschak
, “
A maximum speed of wetting
,”
Nature (London)
282
,
489
491
(
1979
).
3.
J. H.
Snoeijer
,
G.
Delon
,
M.
Fermigier
, and
B.
Andreotti
, “
Avoided critical behavior in dynamically forced wetting
,”
Phys. Rev. Lett.
96
,
174504
(
2006
).
4.
J. H.
Snoeijer
,
J.
Ziegler
,
B.
Andreotti
,
M.
Fermigier
, and
J.
Eggers
, “
Thick films coating a plate withdrawn from a bath
,”
Phys. Rev. Lett.
100
,
244502
(
2008
).
5.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
6.
D.
Quéré
, “
Fluid coating on a fiber
,”
Annu. Rev. Fluid Mech.
31
,
347
(
1999
).
7.
S. J.
Weinstein
and
K. J.
Ruschak
, “
Coating flows
,”
Annu. Rev. Fluid Mech.
36
,
29
53
(
2004
).
8.
O. V.
Voinov
, “
Hydrodynamics of wetting
,”
Fluid Dyn.
11
,
714
721
(
1976
).
9.
R. G.
Cox
, “
The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow
,”
J. Fluid Mech.
168
,
169
194
(
1986
).
10.
J. H.
Snoeijer
,
B.
Andreotti
,
G.
Delon
, and
M.
Fermigier
, “
Relaxation of a dewetting contact line. Part 1. A full-scale hydrodynamic calculation
,”
J. Fluid Mech.
579
,
63
(
2007
).
11.
T. S.
Chan
,
T.
Gueudré
, and
J. H.
Snoeijer
, “
Maximum speed of dewetting on a fiber
,”
Phys. Fluids
23
,
112103
(
2011
).
12.
J. H.
Snoeijer
, “
Free-surface flows with large slopes: Beyond lubrication theory
,”
Phys. Fluids
18
,
021701
(
2006
).
13.
C.
Huh
and
L. E.
Scriven
, “
Hydrodynamic model of steady movement of a solid/liquid/fluid contact line
,”
J. Colloid Interface Sci.
35
,
85
101
(
1971
).
14.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon: Oxford
,
1984
).
15.
Drazin
,
Nonlinear Systems
(
Cambridge University Press
,
Cambridge
,
1992
).
16.
J.
Eggers
, “
Hydrodynamic theory of forced dewetting
,”
Phys. Rev. Lett.
93
,
094502
(
2004
).
17.
J.
Eggers
, “
Existence of receding and advancing contact lines
,”
Phys. Fluids
17
,
082106
(
2005
).
18.
G.
Delon
,
M.
Fermigier
,
J. H.
Snoeijer
, and
B.
Andreotti
, “
Relaxation of a dewetting contact line. Part 2. Experiments
,”
J. Fluid Mech.
604
,
55
(
2008
).
19.
R. V.
Sedev
and
J. G.
Petrov
, “
The critical condition for transition from steady wetting to film entrainment
,”
Colloids Surf.
53
,
147
(
1991
).
20.
B. R.
Duffy
and
S. K.
Wilson
, “
A third-order differential equation arising in thin-film flows and relevant to Tanner's law
,”
Appl. Math. Lett.
10
,
63
(
1997
).
21.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
1968
).
22.
J.
Ziegler
,
J. H.
Snoeijer
, and
J.
Eggers
, “
Film transitions of receding contact lines
,”
Eur. Phys. J. Spec. Top.
166
,
177
(
2009
).
You do not currently have access to this content.