We estimate the bulk viscosity of a selection of well known ideal gases. A relatively simple formula is combined with published values of rotational and vibrational relaxation times. It is shown that the bulk viscosity can take on a wide variety of numerical values and variations with temperature. Several fluids, including common diatomic gases, are seen to have bulk viscosities which are hundreds or thousands of times larger than their shear viscosities. We have also provided new estimates for the bulk viscosity of water vapor in the range 380–1000 K. We conjecture that the variation of bulk viscosity with temperature will have a local maximum for most fluids. The Lambert-Salter correlation is used to argue that the vibrational contribution to the bulk viscosities of a sequence of fluids having a similar number of hydrogen atoms at a fixed temperature will increase with the characteristic temperature of the lowest vibrational mode.

1.
L.
Tisza
, “
Supersonic absorption and Stokes' viscosity relation
,”
Phys. Rev.
61
,
531
(
1942
).
2.
R. E.
Graves
and
B. M.
Argrow
, “
Bulk viscosity: past to present
,”
Int. J. Thermophys.
13
,
337
(
1999
).
3.
K. F.
Herzfeld
and
T. A.
Litovitz
,
Absorption and Dispersion of Ultrasonic Waves
(
Academic
,
New York
,
1959
).
4.
S. M.
Karim
and
L.
Rosenhead
, “
The second coefficient of viscosity of liquids and gases
,”
Revs. Modern Phys.
24
,
108
(
1952
).
5.
P. A.
Thompson
,
Compressible-Fluid Dynamics
(
McGraw-Hill
,
New York
,
1972
).
6.
H. M.
Curran
, “
Use of organic working fluids in Rankine engines
,”
J. Energy
5
,
218
(
1981
).
7.
S.
Devotta
and
F. A.
Holland
, “
Comparison of theoretical Rankine power cycle performance for 24 working fluids
,”
Heat Recovery Syst.
5
,
503
(
1985
).
8.
J.
Yan
, “
On thermodynamic cycles with non-azeotropic mixtures as working fluids
,” Ph.D. dissertation, (
Royal Institute of Technology
, Stockholm, Sweden,
1991
).
9.
T. C.
Hung
,
T. Y.
Shai
, and
S. K.
Wang
, “
A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat
,”
Energy
22
,
661
(
1997
).
10.
B.-T.
Liu
,
K.-H.
Chien
, and
C.-C.
Wang
, “
Effect of working fluids on organic Rankine cycle for waste heat recovery
,”
Energy
29
,
1207
(
2004
).
11.
D.
Wei
,
X.
Lu
,
Z.
Lu
, and
J.
Gu
, “
Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery
,”
Energy Convers. Manage.
48
,
1113
(
2007
).
12.
B.
Saleh
,
G.
Koglbauer
,
M.
Wendland
, and
J.
Fischer
, “
Working fluids for low-temperature organic Rankine cycles
,”
Energy
32
,
1210
(
2007
).
13.
A.
Shuster
,
S.
Karellas
, and
R.
Aumann
, “
Efficiency optimization potential in supercritical organic Rankine cycles
,”
Energy
35
,
1033
(
2010
).
14.
V.
Dostal
,
M. J.
Driscoll
,
P.
Hejzlar
, and
N. E.
Todreas
, “
A supercritical CO2 Brayton cycle for advanced reactor applications
,”
Trans. Am. Nucl. Soc.
85
,
110
(
2001
).
15.
V.
Dostal
,
M. J.
Driscoll
,
P.
Hejzlar
, and
N. E.
Todreas
, “
Component design for a supercritical CO2 Brayton cycle
,”
Trans. Am. Nucl. Soc.
87
,
536
(
2002
).
16.
V.
Dostal
, “
A supercritical carbon dioxide cycle for next generation nuclear reactors
,” Ph.D. dissertation (
Massachusetts Institute of Technology
, Cambridge, MA,
2004
).
17.
A.
Moisseytsev
, “
Passive load follow analysis of the STAR-LM and STAR-H2 systems
,” Ph.D. dissertation (
Texas A&M University
, College Station, TX,
2003
).
18.
A.
Moisseytsev
and
J. J.
Sienicki
, “
Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor
,”
Nucl. Eng. Des.
239
,
1362
(
2009
).
19.
J.
Sarkar
, “
Second law analysis of supercritical CO2 recompression Brayton cycle
,”
Energy
34
,
1172
(
2009
).
20.
J.
Sarkar
, “
Thermodynamic analyses and optimization of a recompression N2O Brayton power cycle
,”
Energy
35
,
3422
(
2010
).
21.
W. K.
Anderson
, “
Numerical study of the aerodynamic effects of using sulfur hexafluoride as a test gas in wind tunnels
,” NASA Technical Paper 3086,
1991
.
22.
W. K.
Anderson
, “
Numerical study on using sulfur hexafluoride as a wind tunnel test gas
,”
AIAA J.
29
,
2179
(
1991
).
23.
J. B.
Anders
, “
Heavy gas wind tunnel research at Langley Research Center
,” ASME Paper 93-FE-5,
1993
.
24.
J. W.
Tom
and
P. G.
Debenedetti
, “
Particle formation with supercritical fluids—a review
,”
J. Aerosol Sci.
22
,
555
(
1991
).
25.
C. A.
Eckert
,
B. L.
Knutson
, and
P. G.
Debenedetti
, “
Supercritical fluids as solvents for chemical and materials processing
,”
Nature (London)
383
,
313
(
1996
).
26.
M.
Turk
,
B.
Helfgen
,
P.
Hils
,
R.
Lietzow
, and
K.
Schaber
, “
Micronization of pharmaceutical substances by rapid expansion of supercritical solutions (RESS): experiments and modeling
,”
Part. Part. Syst. Charact.
19
,
327
(
2002
).
27.
S.
Chapman
and
T. G.
Cowling
,
Mathematical Theory of Non-Uniform Gases
(
Cambridge University Press
,
London
,
1970
).
28.
G. J.
Prangsma
,
A. H.
Alberga
, and
J. J. M.
Beenakker
, “
Ultrasonic determination of the volume viscosity of N2, CO, CH4 and CD4 between 77 and 300 K
,”
Physica
64
,
278
(
1973
).
29.
F. S.
Sherman
, “
A low-density wind-tunnel study of shock-wave structure and relaxation phenomena in gases
,”, NACA TN-3298,
1955
.
30.
G.
Emanuel
, “
Effect of bulk viscosity on a hypersonic boundary layer
,”
Phys. Fluids A
4
,
491
(
1992
).
31.
J. G.
Parker
, “
Rotational and vibrational relaxation in diatomic gases
,”
Phys. Fluids
2
,
449
(
1959
).
32.
R. N.
Schwartz
,
Z. I.
Slawsky
, and
K. F.
Herzfeld
, “
Calculation of vibrational relaxation times in gases
,”
J. Chem. Phys.
10
,
1591
(
1952
).
33.
R. N.
Schwartz
and
K. F.
Herzfeld
, “
Vibrational relaxation in gases (three-dimensional treatment)
,”
J. Chem. Phys.
22
,
767
(
1954
).
34.
F. I.
Tanczos
, “
Calculation of vibrational relaxation times of the chloromethanes
,”
J. Chem. Phys.
25
,
439
(
1956
).
35.
J. D.
Lambert
,
Vibrational and Rotational Relaxation in Gases
(
Clarendon
,
Oxford
,
1977
).
36.
R. C.
Reid
,
J. M.
Prausnitz
, and
B. E.
Poling
,
The Properties of Gases and Liquids
, 4th ed. (
McGraw-Hill
,
New York
,
1987
).
37.
R. C.
Reid
,
J. M.
Prausnitz
, and
T. K.
Sherwood
,
The Properties of Gases and Liquids
, 3rd ed. (
McGraw-Hill
,
New York
,
1977
).
38.
R. A.
Svehla
, “
Estimated viscosities and thermal conductivities of gases at high temperatures
,” NASA TR R-132,
1962
.
39.
G.
Emanuel
, “
Bulk viscosity of a dilute polyatomic gas
,”
Phys. Fluids
2
,
2252
(
1990
).
40.
T. G.
Winter
and
G. L.
Hill
, “
High-temperature ultrasonic measurements of rotational relaxation in hydrogen, deuterium, nitrogen, and oxygen
,”
J. Acoust. Soc. Am.
42
,
848
(
1967
).
41.
M. B.
Ewing
,
A. R. H.
Goodwin
,
M. L.
McGlashan
, and
J. P. M.
Trusler
, “
Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator: 1. Apparatus, acoustic model, and results for dimethylpropane
,”
J. Chem. Thermodyn.
19
,
721
(
1987
).
42.
M. B.
Ewing
,
A. R. H.
Goodwin
, and
J. P. M.
Trusler
, “
Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator. 3. N-pentane
,”
J. Chem. Thermodyn.
21
,
867
(
1989
).
43.
M. B.
Ewing
and
A. R. H.
Goodwin
, “
Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator: 5. 2-methylbutane at temperatures in the range 260 K to 320 K and pressures in the range 2.8 kPa to 80.9 kPa
,”
J. Chem. Thermodyn.
24
,
301
(
1992
).
44.
M. B.
Ewing
,
A. R. H.
Goodwin
,
M. L.
McGlashan
, and
J. P. M.
Trusler
, “
Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator: 2. N-butane
,”
J. Chem. Thermodyn.
20
,
243
(
1988
).
45.
M. B.
Ewing
and
A. R. H.
Goodwin
, “
Thermophysical properties of alkanes from speeds of sound determined using a spherical resonator: 4. 2-methylpropane at temperatures in the range 251 K to 320 K and pressures in the range 5 kPa to 114 kPa
,”
J. Chem. Thermodyn.
23
,
1107
(
1991
).
46.
R.
Holmes
,
G. R.
Jones
, and
R.
Lawrence
, “
Vibrational-rotation-translational energy exchange in some polyatomic molecules
,”
Trans. Faraday Soc.
62
,
46
(
1966
).
47.
H. E.
Bass
,
J. R.
Olson
, and
R. C.
Amme
, “
Vibrational relaxation in H2O vapor in the temperature range of 373-946 K
,”
J. Acoust. Soc. Am.
56
,
1455
(
1974
).
48.
R. G.
Keeton
and
H. E.
Bass
, “
Vibrational and rotational relaxation of water vapor by water vapor, nitrogen, and argon at 500 K
,”
J. Acoust. Soc. Am.
60
,
78
(
1976
).
49.
J. C. F.
Wang
and
G. S.
Springer
, “
Vibrational relaxation times in some hydrocarbons in the range 300–900 °K
,”
J. Chem. Phys.
59
,
6556
(
1973
).
50.
R.
Holmes
and
M. A.
Stott
, “
Temperature dependence of vibrational relaxation times in cyclopropane, ethylene and sulfur hexafluoride
,”
Br. J. Appl. Phys.
1
,
1331
(
1968
).
51.
J. J.
Hurly
, “
Thermophysical properties of chlorine from speed-of-sound measurements
,”
Int. J. Thermophys.
23
,
455
(
2002
).
52.
E. F.
Smiley
and
E. H.
Winkler
, “
Shock-tube measurements of vibrational relaxation
,”
J. Chem. Phys.
22
,
2018
(
1954
).
53.
A.
Eucken
and
R.
Becker
, “
Excitation of intramolecular vibrations in gases and gas mixtures by collisions, based on measurements of sound dispersion
,”
Z. Phys. Chem.
27
,
219
(
1934
).
54.
R.
Schultz
, “
Über Hörschall geschwindigkeit und -dispersion in Chlor
,”
Ann. Phys.
426
,
41
(
1939
).
55.
G. J.
Diebold
,
R. J.
Santoro
, and
G. J.
Goldsmith
, “
Vibrational relaxation of fluorine by a shock tube schlieren method
,”
J. Chem. Phys.
60
,
4170
(
1974
).
56.
F. D.
Shields
, “
Thermal relaxation in fluorine
,”
J. Acoust. Soc. Am.
34
,
271
(
1962
).
57.
W. D.
Breshears
and
L. S.
Blair
, “
Vibrational relaxation in polyatomic molecules: SF6
,”
J. Chem. Phys.
59
,
5824
(
1973
).
58.
P. G.
Corran
,
J. D.
Lambert
,
R.
Salter
, and
B.
Warburton
, “
Temperature dependence of vibrational relaxation times in gases
,”
Proc. R. Soc., London
A244
,
212
(
1958
).
59.
M. B.
Ewing
and
J. P. M.
Trusler
, “
Speeds of sound in CF4 between 175 and 300 K measured with a spherical resonator
,”
J. Chem. Phys.
90
,
1106
(
1989
).
60.
C. J. S. M.
Simpson
,
K. B.
Bridgman
, and
T. R. D.
Chandler
, “
Shock-tube study of vibrational relaxation in nitrous oxide
,”
J. Chem. Phys.
49
,
509
(
1968
).
61.
W.
Griffith
,
D.
Brickl
, and
V.
Blackman
, “
Structure of shock waves in polyatomic gases
,”
Phys. Rev.
102
,
1209
(
1956
).
62.
C. J. S. M.
Simpson
,
K. B.
Bridgman
, and
T. R. D.
Chandler
, “
Shock-tube study of vibrational relaxation in carbon dioxide
,”
J. Chem. Phys.
49
,
513
(
1968
).
63.
J. D.
Lambert
and
R.
Salter
, “
Vibrational relaxation in gases
,”
Proc. R. Soc., London
A253
,
277
(
1959
).
You do not currently have access to this content.