We use Lagrangian measures, depicted by finite-time Lyapunov exponents, to characterize transport patterns of inertial pollutant particles formed in urban flows. Motivated by actual events we focus on flows in realistic urban geometry. Both deterministic and stochastic particle transport patterns have been identified, as inertial Lagrangian coherent structures. For the deterministic case, the organizing structures are well-defined and we extract them at different hours of a day to reveal the variability of coherent patterns. For the stochastic case, we use a random displacement model for fluid particles and derive the governing equation for inertial particles to examine the change in organizing structures due to “zeroth-order” random noise. We find that, (1) the Langevin equation for inertial particles can be reduced to a random displacement model; (2) using random noise based on inhomogeneous turbulence, whose diffusivity is derived from k − ε models, major coherent structures survive to organize local flow patterns and weaker structures are smoothed out due to random motion.

1.
A. J.
Arnfield
, “
Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island
,”
Int. J. Climatol.
23
,
1
26
(
2003
).
2.
R. E.
Britter
and
S. R.
Hanna
, “
Flow and dispersion in urban areas
,”
Annu. Rev. Fluid Mech.
35
,
469
496
(
2003
).
3.
H. J. S.
Fernando
, “
Fluid dynamics of urban atmospheres in complex terrain
,”
Annu. Rev. Fluid Mech.
42
,
365
389
(
2010
).
4.
H. J. S.
Fernando
,
D.
Zajic
,
S. Di
Sabatino
,
R.
Dimitrova
,
B.
Hedquist
, and
A.
Dallman
, “
Flow, turbulence, and pollutant dispersion in urban atmospheres
,”
Phys. Fluids
22
,
051301
(
2010
).
5.
R.
Avissar
and
R. A.
Pielke
, “
A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology
,”
Mon. Weather Rev.
117
,
2113
2136
(
1989
).
6.
E.
Kalnay
and
M.
Cai
, “
Impact of urbanization and land-use change on climate
,”
Nature (London)
423
,
528
531
(
2003
).
7.
K. L.
Civerolo
,
G.
Sistla
,
S. T.
Rao
, and
D. J.
Nowak
, “
The effects of land use in meteorological modeling: implications for assessment of future air quality scenarios
,”
Atmos. Environ.
34
,
1615
1621
(
2000
).
8.
P.
Kastner-Klein
,
R.
Berkowicz
, and
R.
Britter
, “
The influence of street architecture on flow and dispersion in street canyons
,”
Meteorol. Atmos. Phys.
87
,
121
131
(
2004
).
9.
J.-F.
Sini
,
S.
Anquetin
, and
P. G.
Mestayer
, “
Pollutant dispersion and thermal effects in urban street canyons
,”
Atmos. Environ.
30
,
2659
2677
(
1996
).
10.
J.-J.
Kim
and
J.-J.
Baik
, “
Urban street-canyon flows with bottom heating
,”
Atmos. Environ.
35
,
3395
3404
(
2001
).
11.
J.-J.
Kim
and
J.-J.
Baik
, “
A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k - ɛ turbulence model
,”
Atmos. Environ.
38
,
3039
3048
(
2004
).
12.
S. E.
Belcher
, “
Mixing and transport in urban areas
,”
Philos. Trans. R. Soc. London, Ser. A
363
,
2947
2968
(
2005
).
13.
M. R.
Maxey
and
J. J.
Riley
, “
Equation of motion for a small rigid sphere in a nonuniform flow
,”
Phys. Fluids
26
,
883
889
(
1983
).
14.
T. R.
Auton
,
J. C. R.
Hunt
, and
M.
Prud’Homme
, “
The force exerted on a body in inviscid unsteady non-uniform rotational flow
,”
J. Fluid Mech.
197
,
241
257
(
1988
).
15.
M. R.
Maxey
, “
The motion of small spherical particles in a cellular flow field
,”
Phys. Fluids
30
,
1915
1928
(
1987
).
16.
O. A.
Druzhinin
, “
On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification
,”
J. Fluid Mech.
297
,
49
76
(
1995
).
17.
A.
Babiano
,
J. H. E.
Cartwright
,
O.
Piro
, and
A.
Provenzale
, “
Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems
,”
Phys. Rev. Lett.
84
,
5764
5767
(
2000
).
18.
J.
Ferry
and
S.
Balachandar
, “
A fast Eulerian method for disperse two-phase flow
,”
Int. J. Multiphase Flow
27
,
1199
01226
(
2001
).
19.
E.
Mograbi
and
E.
Bar-ziv
, “
On the asymptotic solution of the Maxey-Riley equation
,”
Phys. Fluids
18
,
051704
(
2006
).
20.
G.
Haller
and
T.
Sapsis
, “
Where do inertial particles go in fluid flows
,”
Physica D
237
(
5
),
573
583
(
2008
).
21.
T.
Sapsis
and
G.
Haller
, “
Inertial particle dynamics in a hurricane
,”
J. Atmos. Sci.
66
,
2481
2492
(
2009
).
22.
G.
Haller
, “
Distinguished material surfaces and coherent structures in 3D fluid flows
,”
Physica D
149
,
248
277
(
2001
).
23.
G.
Haller
, “
An objective definition of a vortex
,”
J. Fluid Mech.
525
,
1
26
(
2005
).
24.
A.
Okubo
, “
Horizontal dispersion of floatable trajectories in the vicinity of velocity singularities such as convergencies
,”
Deep-Sea Res.
17
,
445
454
(
1970
).
25.
M. S.
Chong
,
A. E.
Perry
, and
B. J.
Cantwell
, “
A general classification of three-dimensional flow field
,”
Phys. Fluids A
2
,
765
777
(
1990
).
26.
J.
Weiss
, “
The dynamics of enstrophy transfer in 2-dimensional hydrodynamics
,”
Physica D
48
,
273
294
(
1991
).
27.
J.
Jeong
and
F.
Hussain
, “
On the identification of a vortex
,”
J. Fluid Mech.
285
,
69
94
(
1995
).
28.
A. B.
Olcay
,
T. S.
Pottebaum
, and
P. S.
Krueger
, “
Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors
,”
Chaos
20
,
017506
(
2010
).
29.
W.
Tang
,
J.
Taylor
, and
A.
Mahalov
, “
Lagrangian dynamics in stochastic inertial-gravity waves
,”
Phys. Fluids
22
,
126601
(
2010
).
30.
H. C.
Rodean
,
Stochastic Lagrangian Models for Turbulent Diffusion
(
American Meteorological Society
,
1996
).
31.
D. J.
Thomson
, “
Criteria for the selection of stochastic models of particle trajectories in turbulent flows
,”
J. Fluid Mech.
180
,
529
556
(
1987
).
32.
I. J.
Benczik
,
Z.
Toroczkai
, and
T.
Tél
, “
Selective sensitivity of open chaotic flows on inertial tracer advection: Catching particles with a stick
,”
Phys. Rev. Lett.
89
,
164501
(
2002
).
33.
T.
Sapsis
,
N. T.
Ouellette
,
J. P.
Golub
, and
G.
Haller
, “
Neutrally buoyant particle dynamics in fluid flows: Comparison of experiments with Lagrangian stochastic models
,”
Phys. Fluids
23
,
093304
(
2011
).
34.
T.
Sapsis
and
G.
Haller
, “
Instabilities in the dynamics of neutrally buoyant particles
,”
Phys. Fluids
20
,
017102
(
2008
).
35.
W.
Tang
,
G.
Haller
,
J.-J.
Baik
, and
Y.-H.
Ryu
, “
Locating an atmospheric contamination source using slow manifolds
,”
Phys. Fluids
21
,
043302
(
2009
).
36.
J. D.
Wilson
and
B. L.
Sawford
, “
Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere
,”
Boundary-Layer Meteorol.
78
,
191
210
(
1996
).
37.
T. K.
Flesch
,
J. D.
Wilson
, and
E.
Yee
, “
Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions
,”
J. Appl. Meteorol.
34
,
1320
1332
(
1995
).
38.
F. B.
Smith
, “
The diffusion of smoke from a continuous elevated point-source into a turbulent atmosphere
,”
J. Fluid Mech.
2
,
49
76
(
1957
).
39.
G.
Haller
, “
Finding finite-time invariant manifolds in two-dimensional velocity fields
,”
Chaos
10
,
99
108
(
2000
).
40.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Physica D
147
,
352
370
(
2000
).
41.
G.
Haller
, “
A variational theory of hyperbolic Lagrangian coherent structures
,”
Physica D
240
,
574
598
(
2011
).
42.
T.
Sapsis
,
J.
Peng
, and
G.
Haller
, “
Instabilities of prey dynamics in jellyfish feeding
,”
Bull. Math. Biol.
73
,
1841
1856
(
2011
).
43.
G. T.
Csanady
, “
Turbulent diffusion of heavy particles in the atmosphere
,”
J. Atmos. Sci.
20
,
201
208
(
1963
).
44.
B. L.
Sawford
and
F. M.
Guest
, “
Lagrangian statistical simulations of the turbulent motion of heavy particles
,”
Boundary-Layer Meteorol.
54
,
147
166
(
1991
).
45.
R.
Röckle
, “
Bestimmung der Stomungsverhaltnisse im Bereich komplexer Bebauungsstrukturen
,” Ph.D. dissertation (
Vom Fachbereich Mechanik
, der Technischen Hochschule Darmstadt,
1990
).
46.
E. R.
Pardyjak
and
M. J.
Brown
, “
Evaluation of a fast response urban wind model—Comparison to single-building wind tunnel data
,” Los Alamos National Laboratory Report No. LA-UR-01-4028,
2001
.
47.
B.
Singh
,
B.
Hansen
,
M.
Brown
, and
E.
Pardyjak
, “
Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon
,”
Environ. Fluid Mech.
8
,
281
312
(
2008
).
48.
M. D.
Williams
,
M. J.
Brown
,
B.
Singh
, and
D.
Boswell
, “
QUIC-PLUME Theory Guide
,” Los Alamos National Laboratory Report No. LA-UR-04-0561,
2004
.
49.
J. D.
Wilson
and
E.
Yee
, “
A critical examination of the random displacement model of turbulent dispersion
,”
Boundary-Layer Meteorol.
125
,
399
416
(
2007
).
50.
W.
Tang
,
P. W.
Chan
, and
G.
Haller
, “
Accurate extraction of LCS over finite domains, with applications to flight data analyses over Hong Kong International Airport
,”
Chaos
20
,
017502
(
2010
).
You do not currently have access to this content.