Supercritical pressure conditions designate a situation where the working fluid pressure is above the critical point. Among these conditions, it is interesting to identify a transcritical range which corresponds to cases where the pressure is above the critical point, but the injection temperature is below the critical value. This situation is of special interest because it raises fundamental issues which have technological relevance in the analysis of flows in liquid rocket engines. This situation is here envisaged by analyzing the behavior of a nitrogen shear coaxial jet comprising an inner stream injected at temperatures close to the critical temperature and a coaxial flow at a higher temperature. Experiments are carried out both in the absence of external modulation and by imposing a large amplitude transverse acoustic field. Real gas large eddy simulations are performed for selected experiments. The combination of experiments and calculations is used to evaluate effects of injector geometry and operating parameters. Calculations retrieve what is observed experimentally when the momentum flux ratio of the outer to the inner stream

$J= (\rho _eu_e^2)/(\rho _iu_i^2)$
J=(ρeue2)/(ρiui2) is varied. Results exhibit the change in flow structure and the development of a recirculation region when this parameter exceeds a critical value. The instantaneous flow patterns for different momentum flux ratios are used in a second stage to characterize the dynamical behavior of the flow in terms of power spectral density of velocity and density fluctuations. Results obtained under acoustic modulation provide insight into mixing enhancement of coaxial streams with a view of its possible consequences in high frequency combustion instabilities. It is shown in particular that the presence of strong acoustic modulations notably reduces the high density jet core length, indicating an increased mixing efficiency. This behavior is more pronounced when the jet is placed at the location of maximum transverse velocity fluctuations.

1.
V.
Yang
,
M.
Habiballah
,
J.
Hulka
, and
M.
Popp
, (eds.), “
Liquid rocket thrust chambers: Aspects of modeling, analysis, and design
,” AIAA Progress in Astronautics and Aeronautics, Vol. 200 (
2004
),
722
pp.
2.
B.
Chehroudi
,
D.
Talley
, and
E.
Coy
, “
Visual characteristics and initial growth rate of round cryogenic jets at subcritical and supercritical pressures
,”
Phys. Fluids
14
(
2
),
850
861
(
2002
).
3.
W.
Mayer
,
J.
Tellar
,
R.
Branam
,
G.
Schneider
, and
J.
Hussong
, “
Raman measurement of cryogenic injection at supercritical pressure
,”
Int. J. Heat Mass Transfer
39
,
709
719
(
2003
).
4.
M.
Oschwald
and
A.
Schik
, “
Supercritical nitrogen free jet investigated by spontaneous raman scattering
,”
Exp. Fluids
27
,
497
506
(
1999
).
5.
M.
Oschwald
,
J. J.
Smith
,
R.
Branam
,
J.
Hussong
,
A.
Shick
,
B.
Chehroudi
, and
D.
Talley
, “
Injection of fluids into supercritical environments
,”
Combust. Sci. Technol.
178
,
49
100
(
2006
).
6.
C.
Segal
and
S. A.
Polikhov
, “
Subcritical to supercritical mixing
,”
Phys. Fluids
20
,
052101
(
2008
).
7.
A.
Roy
and
C.
Segal
, “
Experimental study of fluid jet mixing at supercritical conditions
,”
J. Propul. Power
26
(
6
),
1205
1211
(
2010
).
8.
B. E.
Poling
,
J. M.
Prausnitz
, and
J. P.
O’Connel
,
The Properties of Gases and Liquids
, 5th ed. (
McGraw-Hill
,
2001
).
9.
R.
Branam
and
W.
Mayer
, “
Characterisation of cryogenic injection at supercritical pressure
,”
J. Propul. Power
19
(
3
),
342
355
(
2003
).
10.
M.
Oschwald
and
M. M.
Micci
, “
Spreading angle and centerline variation of density of supercritical nitrogen jets
,”
Atomization Sprays
11
,
91
106
(
2002
).
11.
D. W.
Davis
,
B.
Chehroudi
, and
I.
Sorensen
, “
Measurements in an acoustically driven coaxial jet under supercritical conditions
,” in
43rd AIAA Aerospace Science Meeting and Exhibit, Reno, NV, Jan. 10–13
, AIAA paper No. 2005-736,
2005
.
12.
D. W.
Davis
and
B.
Chehroudi
, “
Measurements in an acoutically-driven coaxial jet under sub-, near-, and supercritical conditions
,”
J. Propul. Power
23
(
2
),
364
374
(
2007
).
13.
I. A.
Leyva
,
B.
Chehroudi
, and
D.
Talley
, “
Dark core analysis of coaxial injectors at sub-, near-, and supercritical conditions in a transverse acoustic field
,” in
43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, OH, July 8–11
, AIAA Paper No. 2007-5456,
2007
.
14.
I. A.
Leyva
,
J.
Rodriguez
,
B.
Chehroudi
, and
D.
Talley
, “
Preliminary results on coaxial jet spread angles and the effects of variable phase transverse acoustic fields
,” in
46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, Jan. 7-10
, AIAA paper No. 2008-950,
2008
.
15.
J.
Rodriguez
,
I.
Leyva
,
J.
Graham
, and
D.
Talley
, “
Mixing enhancement of liquid rocket engine injector flow
,” in
45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, Colorado, August 2–5
, AIAA Paper No. 2009-5143,
2009
.
16.
J.
Rodriguez
,
J.
Graham
,
I.
Leyva
, and
D.
Talley
, “
Effect of variable phase transverse acoustic fields on coaxial jet forced spread angles
,” in
47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, Florida, 5–8 January
, AIAA Paper No. 2009-231 (
American Institute of Aeronautics and Astronautics
, 1801 Alexander Bell Dr., Suite 500 Reston, VA 20191-4344,
USA
).
17.
W. O. H.
Mayer
and
R.
Branam
, “
Atomization characteristics on the surface of a round liquid jet
,”
Exp. Fluid
36
,
528
539
(
2004
).
18.
M.
Oschwald
,
A.
Schik
,
M.
Klar
, and
W.
Mayer
, “
Investigation of coaxial LN2-GH2-injection at supercritical pressure by spontaneous Raman scattering
,” in
35th Joint Propulsion Conference, Los Angeles, CA
,
1999
, AIAA Paper No. 99-2887.
19.
J. C.
Lasheras
,
E.
Villermaux
, and
E. J.
Hopfinger
, “
Break-up and atomization of a round water jet by a high-speed annular air jet
,”
J. Fluid Mech.
357
,
351
379
(
1998
).
20.
E.
Villermaux
and
H.
Rehab
, “
Mixing in coaxial jets
,”
J. Fluid Mech.
425
,
161
185
(
2000
).
21.
S.
Candel
,
M.
Juniper
,
G.
Singla
,
P.
Scouflaire
, and
C.
Rolon
, “
Structure and dynamics of cryogenic flames at supercritical pressure
,”
Combust. Sci. Technol.
178
,
161
192
(
2006
).
22.
H.
Rehab
,
E.
Villermaux
, and
E. J.
Hopfinger
, “
Flow regimes of large-velocity-ratio coaxial jets
,”
J. Fluid Mech.
345
,
357
381
(
1997
).
23.
B.
Chehroudi
and
D.
Talley
, “
Interaction of acoustic waves with a cryogenic nitrogen jet at sub- and supercritical pressures
,” in
40th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada, January 14–17
, AIAA Paper No. 2002-342,
2002
.
24.
M.
Habiballah
,
M.
Orain
,
F.
Grisch
,
L.
Vingert
, and
P.
Gicquel
, “
Experimental studies of high-pressure cryogenic flames on the Mascotte facility
,”
Combust. Sci. Technol.
178
(
1
),
101
128
(
2006
).
25.
J. J.
Smith
,
G.
Schneider
,
D.
Suslov
,
M.
Oschwald
, and
O.
Haidn
, “
Steady-state high pressure lox/h2 rocket engine combustion
,”
Aerosp. Sci. Technol.
11
,
39
47
(
2007
).
26.
G.
Singla
, “
Etude des Flammes Cryotechniques Oxygène Liquide/Méthane à Haute Pression
,” Ph.D. thesis (
Ecole Centrale de Paris
,
2005
).
27.
G.
Singla
,
P.
Scouflaire
,
C.
Rolon
, and
S.
Candel
, “
Planar laser-induced fluorescence of OH in high-pressure cryogenic LOx/GH2 jet flames
,”
Combust. Flame
144
(
1–2
),
151
169
(
2006
).
28.
F.
Richecoeur
,
P.
Scouflaire
,
S.
Ducruix
, and
S.
Candel
, “
High-frequency transverse acoustic coupling in a multiple-injector cryogenic combustor
,”
J. Propul. Power
22
(
4
),
790
799
(
2006
).
29.
Y.
Mery
,
S.
Ducruix
,
P.
Scouflaire
, and
S.
Candel
, “
Injection coupling with high amplitude transverse modes: Experimentation and simulation
,”
C. R. Mec.
337
(
6–7
),
426
437
(
2009
).
30.
R.
Dehoff
,
Thermodynamics in Materials Science
, 2nd ed. (
Taylor & Francis
,
2006
).
31.
V.
Yang
, “
Modeling of supercritical vaporization, mixing, and combustion processes in liquid-fueled propulsion systems
,”
Proc. Combust. Inst.
28
(
1
),
925
942
(
2000
).
32.
J. C.
Oefelein
, “
Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure
,”
Proc. Combust. Inst.
30
(
2
),
2929
2937
(
2005
).
33.
J.
Bellan
, “
Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays
,”
Prog. Energy Combust. Sci.
26
,
329
366
(
2000
).
34.
H.
Meng
and
V.
Yang
, “
A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme
,”
J. Comput. Phys.
189
(
1
),
277
304
(
2003
).
35.
J.
Bellan
, “
Theory, modeling and analysis of turbulent supercritical mixing
,”
Combust. Sci. Technol.
178
(
1
),
253
281
(
2006
).
36.
L. C.
Selle
,
N. A.
Okong'o
,
J.
Bellan
, and
K. G.
Harstad
, “
Modelling of subgrid-scale phenomena in supercritical transitional mixing layers: an a priori study
,”
J. Fluid Mech.
593
,
57
91
(
2007
).
37.
E. S.
Taskinoglu
and
J.
Bellan
, “
A posteriori study using a DNS database describing fluid disintegration and binary-species mixing under supercritical pressure: heptane and nitrogen
,”
J. Fluid Mech.
645
,
211
254
(
2010
).
38.
N.
Zong
and
V.
Yang
, “
Cryogenic fluid jets and mixing layers in transcritical and supercritical environments
,”
Combust. Sci. Technol.
178
(
1
),
193
227
(
2006
).
39.
N.
Zong
,
H.
Meng
,
S.-Y.
Hsieh
, and
V.
Yang
, “
A numerical study of cryogenic fluid injection and mixing under supercritical conditions
,”
Phys. Fluids
16
(
12
),
4248
4261
(
2004
).
40.
N.
Zong
, “
Modeling and simulation of cryogenic fluid injection and mixing dynamics under supercritical conditions
,” Ph.D. dissertation (
The Pennsylvania State University
,
2005
).
41.
T.
Schmitt
,
L.
Selle
,
A.
Ruiz
, and
B.
Cuenot
, “
Large-eddy simulation of supercritical-pressure round jets
,”
AIAA J.
48
(
9
),
2133
2144
(
2010
).
42.
N.
Zong
and
V.
Yang
, “
A numerical study of high-pressure oxygen/methane mixing and combustion of a shear coaxial injector
,” in “
43rd AIAA Aerospace Sciences Meeting and Exhibit
,” Vol.
AIAA-2005-0152
,
2005
.
43.
T.
Liu
,
N.
Zong
, and
V.
Yang
, “
Dynamics of shear-coaxial cryogenic nitrogen jets with acoustic excitation under supercritical conditions
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nevada
, AIAA Paper No. 2006-75,
2006
.
44.
J. C.
Oefelein
, “
Mixing and combustion of cryogenic oxygen-hydrogen shear-coaxial jet flames at supercritical pressure
,”
Combust. Sci. Technol.
178
(
1
),
229
252
(
2006
).
45.
J. C.
Oefelein
and
V.
Yang
, “
Modeling high-pressure mixing and combustion processes in liquid rocket engines
,”
Journal of Propulsion and Power
14
(
5
),
843
857
(
1998
).
46.
N.
Zong
and
V.
Yang
, “
Near-field flow and flame dynamics of LOX/methane shear-coaxial injector under supercritical conditions
,”
Proc. Combust. Inst.
31
(
2
),
2309
2317
(
2007
).
47.
S.
Matsuyama
,
J.
Shinjo
,
S.
Ogawa
, and
Y.
Mizobuchi
, “
Large Eddy simulation of LOX/GH2 shear-coaxial jet flame at supercritical pressure
,” in
48th AIAA Aerospace Sciences Meeting, Orlando, Florida
, Vol.
AIAA 2010-208
, January
2010
.
48.
M.
Masquelet
,
S.
Menon
,
Y.
Jin
, and
R.
Friedrich
, “
Simulation of unsteady combustion in a LOX-GH2 fueled rocket engine
,”
Aerosp. Sci. Technol.
13
(
8
),
466
474
(
2009
).
49.
T.
Schmitt
,
Y.
Méry
,
M.
Boileau
, and
S.
Candel
, “
Large-eddy simulation of oxygen/methane flames under transcritical conditions
,”
Proc. Combust. Inst.
33
(
1
),
1383
1390
(
2011
).
50.
F. X.
Demoulin
,
S.
Zurbach
, and
A.
Mura
, “
High-pressure supercritical turbulent cryogenic injection and combustion: A single-phase flow modeling proposal
,”
J. Propul. Power
25
(
2
),
452
464
(
2009
).
51.
G. C.
Cheng
and
R.
Farmer
, “
Real fluid modeling of multiphase flows in liquid rocket engine combustors
,”
J. Propul. Power
22
(
6
),
1373
1381
(
2006
).
52.
M. M.
Poschner
and
M.
Pfitzner
, “
CFD-simulation of the injection and combustion of LOX and H2 at supercritical pressures
,” in
Proceedings of the European Combustion Meeting
,
2009
.
53.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry WebBook, NIST Standard Reference Database 69
, edited by
P. J.
Linstrom
and
W. G.
Mallard
(
National Institute of Standards and Technology
,
Gaithersburg, MD
,
2007
).
54.
N.
Otsu
, “
A threshold selection method from gray-level histograms
,”
Automatica
11
,
285
296
(
1975
).
55.
I. A.
Leyva
,
B.
Chehroudi
, and
D.
Talley
, “
Dark core analysis of coaxial injectors at sub-, near-, and supercritical conditions in a transverse acoustic field
,” in
54th JANNAF Meeting, Denver, CO, May 14-18
,
2007
.
56.
T. H.
Chung
,
M.
Ajlan
,
L. L.
Lee
, and
K. E.
Starling
, “
Generalized multiparameter correlation for nonpolar and polar fluid transport properties
,”
Ind. Eng. Chem. Res.
27
(
4
),
671
679
(
1988
).
57.
L.
Selle
and
T.
Schmitt
, “
Large-eddy simulation of single-species flows under supercritical thermodynamic conditions
,”
Combust. Sci. Technol.
182
(
4
),
392
404
(
2010
).
58.
D.
Peng
and
D. B.
Robinson
, “
A new two-constant equation of state
,”
Ind. Eng. Chem. Fundam.
15
,
59
64
(
1976
).
59.
R. S.
Miller
,
K. G.
Harstad
, and
J.
Bellan
, “
Direct numerical simulation of supercritical fluid mixing layers applied to heptane-nitrogen
,”
J. Fluid Mech.
436
,
1
39
(
2001
).
60.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
61.
M. W.
Chase
,
NIST-JANAF Thermochemical Tables
(
American Institute of Physics
,
1998
).
62.
F.
Nicoud
and
F.
Ducros
, “
Subgrid-scale stress modelling based on the square of the velocity gradient
,”
Flow, Turbul. Combust.
62
(
3
),
183
200
(
1999
).
63.
T.
Schönfeld
and
T.
Poinsot
, “
Influence of boundary conditions in LES of premixed combustion instabilities
,” in
Annual Research Briefs
(
Center for Turbulence Research, NASA Ames/Stanford University
,
1999
), pp.
73
84
.
64.
V.
Moureau
,
G.
Lartigue
,
Y.
Sommerer
,
C.
Angelberger
,
O.
Colin
, and
T.
Poinsot
, “
High-order methods for DNS and LES of compressible multi-component reacting flows on fixed and moving grids
,”
J. Computat. Phys.
202
(
2
),
710
736
(
2005
).
65.
A. G.
Kravchenko
and
P.
Moin
, “
On the effect of numerical errors in large eddy simulations of turbulent flows
,”
J. Comput. Phys.
131
,
310
322
(
1996
).
66.
J.
Gullbrand
and
F. K.
Chow
, “
The effect of numerical errors of turbulence models in large eddy simulations of channel flow, with and without explicit filtering
,”
J. Fluid Mech.
495
,
323
341
(
2003
).
67.
L.
Quartapelle
and
V.
Selmin
, “
High-order Taylor-Galerkin methods for non-linear multidimensional problems
,”
Finite Elements in Fluids
76
,
90
(
1993
).
68.
T.
Poinsot
and
S.
Lele
, “
Boundary conditions for direct simulations of compressible viscous flows
,”
J. Comput. Phys.
101
(
1
),
104
129
(
1992
).
69.
N.
Okong'o
and
J.
Bellan
, “
Consistent boundary conditions for multicompoment real gas mixtures based on characteristic waves
,”
J. Comput. Phys.
176
,
330
344
(
2002
).
70.
L.
Pons
,
N.
Darabiha
,
S.
Candel
,
T.
Schmitt
, and
B.
Cuenot
, “
The structure of multidimensional strained flames under transcritical conditions
,”
C. R. Mec.
337
(
6–7
),
517
527
(
2009
).
71.
T.
Schmitt
,
L.
Selle
,
B.
Cuenot
, and
T.
Poinsot
, “
Large-eddy simulation of transcritical flows
,”
C. R. Mec.
337
(
6–7
),
528
538
(
2009
).
72.
I.
Celik
,
A.
Smirnov
, and
J.
Smith
, “
Appropriate initial and boundary conditions for LES of a ship wake
,” in
Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference
, Vol.
FEDSM99-7851
,
San Francisco, California, USA
,
1999
.
73.
A.
Smirnov
,
S.
Shi
, and
I.
Celik
, “
Random flow generation technique for large eddy simulations and particle-dynamics modeling
,”
Trans. ASME, J. Appl. Mech.
123
,
359
371
(
2001
).
74.
N.
Guezennec
and
T.
Poinsot
, “
Acoustically nonreflecting and reflecting boundary conditions for vorticity injection in compressible solvers
,”
AIAA J.
47
,
1709
1722
(
2009
).
75.
C. J.
Chen
and
W.
Rodi
,
Vertical Turbulent Buoyant Jets: A Review of Experimental Data
(
Pergamon
,
1980
).
76.
D.
Wee
,
T.
Yi
,
A.
Annaswamy
, and
A. F.
Ghoniem
, “
Self-sustained oscillations and vortex shedding in backward-facing step flows: Simulation and linear instability analysis
,”
Phys. Fluids
16
,
3361
3373
(
2004
).
77.
C.
Rey
,
S.
Ducruix
, and
S.
Candel
, “
A method for the transverse modulation of reactive flows with application to combustion instability
,”
Combust. Theory Modell.
9
,
5
22
(
2005
).
78.
A. L.
Birbaud
,
D.
Durox
,
S.
Ducruix
, and
S.
Candel
, “
Dynamics of free jets submitted to upstream acoustic modulations
,”
Phys. Fluids
19
,
013602
(
2007
).
You do not currently have access to this content.