In turbulence, ideas of energy cascade and energy flux, substantiated by the exact Kolmogorov relation, lead to the determination of scaling laws for the velocity spatial correlation function. Here we ask whether similar ideas can be applied to temporal correlations. We critically review the relevant theoretical and experimental results concerning the velocity statistics of a single fluid particle in the inertial range of statistically homogeneous, stationary and isotropic turbulence. We stress that the widely used relations for the second structure function, D2(t) ≡ ⟨[v(t) − v(0)]2⟩∝εt, relies on dimensional arguments only: no relation of D2(t) to the energy cascade is known, neither in two- nor in three-dimensional turbulence. State of the art experimental and numerical results demonstrate that at high Reynolds numbers, the derivative

$\frac{d D_2(t)}{dt}$
dD2(t)dt has a finite non-zero slope starting from t ≈ 2τη. The analysis of the acceleration spectrum ΦA(ω) indicates a possible small correction with respect to the dimensional expectation ΦA(ω) ∼ ω0 but present data are unable to discriminate between anomalous scaling and finite Reynolds effects in the second order moment of velocity Lagrangian statistics.

1.
G.
Falkovich
,
K.
Gawedzki
, and
M.
Vergassola
, “
Particles and fields in fluid turbulence
,”
Rev. Mod. Phys.
73
,
913
975
(
2001
).
2.
R. J.
Hill
, “
Equations relating structure functions of all orders
,”
J. Fluid Mech.
434
,
379
388
(
2001
).
3.
A.
Pumir
,
B.
Shraiman
, and
M.
Chertkov
, “
The Lagrangian view of energy transfer in turbulent flow
,”
Europhys. Lett.
56
,
379
385
(
2001
).
4.
R.
Kraichnan
, “
Inertial ranges in two-dimensional turbulence
,”
Phys. Fluids
10
,
1417
(
1967
).
5.
G.
Boffetta
and
R.
Ecke
, “
Two-dimensional turbulence
,”
Annu. Rev. Fluid Mech.
44
,
427
(
2012
).
6.
L.
Landau
and
E.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
London
,
1959
).
7.
A. S.
Monin
and
A. M.
Yaglom
,
Statistical Fluid Mechnics
(
MIT
,
Boston
,
1972
).
8.
N.
Mordant
,
P.
Metz
,
O.
Michel
, and
J.-F.
Pinton
, “
Measurement of Lagrangian velocity in fully developed turbulence
,”
Phys. Rev. Lett.
87
,
214501
(
2001
).
9.
L.
Biferale
,
G.
Boffetta
,
A.
Celani
,
A.
Lanotte
, and
F.
Toschi
, “
Particle trapping in three-dimensional fully developed turbulence
,”
Phys. Fluids
17
,
021701
(
2005
).
10.
H.
Xu
,
M.
Bourgoin
,
N.
Ouellette
, and
E.
Bodenschatz
, “
High order Lagrangian velocity statistics in turbulence
,”
Phys. Rev. Lett.
96
,
024503
(
2006
).
11.
J.
Bec
,
L.
Biferale
,
A.
Lanotte
,
A.
Scagliarini
, and
F.
Toschi
, “
Turbulent pair dispersion of inertial particles
,”
J. Fluid Mech.
645
,
497
528
(
2010
).
12.
H.
Xu
,
N. T.
Ouellette
,
D.
Vincenzi
, and
E.
Bodenschatz
, “
Acceleration correlations and pressure structure functions in high-Reynolds number turbulence
,”
Phys. Rev. Lett.
99
,
204501
(
2007
).
13.
G.
Falkovich
,
Fluid Mechanics, A Short Course for Physicists
(
Cambridge University Press
,
2011
).
14.
T.
Tennekes
and
J. L.
Lumley
,
A First Course in Turbulence
(
MIT
,
Cambridge, MA
,
1972
).
15.
N.
Mordant
,
A. M.
Crawford
, and
E.
Bodenschatz
, “
Three-dimensional structure of the Lagrangian acceleration in turbulent flows
,”
Phys. Rev. Lett.
93
,
214501
(
2004
).
16.
P.
Yeung
and
S.
Pope
, “
Lagrangian statistics from direct numerical simulations of isotropic turbulence
,”
J. Fluid Mech.
207
,
531
586
(
1989
).
17.
P.
Yeung
,
S.
Pope
,
E.
Kurth
, and
A.
Lamorgese
, “
Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence
,”
J. Fluid Mech.
582
,
399
422
(
2007
).
18.
J.
Hackl
,
P.
Yeung
, and
B.
Sawford
, “
Multi-particle and tetrad statistics in numerical simulations of turbulent dispersion
,”
Phys. Fluids
23
,
065103
(
2011
).
19.
B.
Sawford
and
P.
Yeung
, “
Kolmogorov similarity scaling for one-particle Lagrangian statistics
,”
Phys. Fluids
23
,
091704
(
2011
).
20.
R.-C.
Lien
and
E. A.
D’Asaro
, “
The Kolmogorov constant for the Lagrangian velocity spectrum and structure function
,”
Phys. Fluids
14
,
4456
4459
(
2002
).
21.
B. L.
Sawford
, “
Reynolds number effects in Lagrangian stochastic models of turbulent dispersion
,”
Phys. Fluids A
3
,
1577
1586
(
1991
).
22.
P.
Yeung
,
S.
Pope
,
A.
Lamorgese
, and
D.
Donzis
, “
Acceleration and dissipation statistics of numerically simulated isotropic turbulence
,”
Phys. Fluids
18
,
065103
(
2006
).
23.
G.
Gulitski
,
M.
Kholmyansky
,
W.
Kinzelbach
,
B.
Lüthi
,
A.
Tsinober
, and
S.
Yorish
, “
Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters
,”
J. Fluid Mech.
589
,
83
102
(
2007
).
24.
C.
Meneveau
, “
Transition between viscous and inertial-range scaling of turbulence structure functions
,”
Phys. Rev. E
54
,
3657
3663
(
1996
).
25.
S.
Kurien
and
K.
Sreenivasan
, “
Anisotropic scaling contributions to high-order structure functions in high-reynolds-number turbulence
,”
Phys. Rev. E
62
,
2206
2212
(
2000
).
26.
A.
Arneodo
 et al, “
Universal intermittent properties of particles trajectories in highly turbulent flows
,”
Phys. Rev. Lett.
100
,
254504
(
2008
).
27.
L.
Biferale
and
A.
Lanotte
, “
About the second order moment of Lagrangian velocity increments
,” University of California Santa Barbara, Kavli Institute Preprint, NSF–ITP–11–103,
2011
.
28.
R.
Benzi
,
S.
Ciliberto
,
R.
Tripiccione
,
C.
Baudet
,
F.
Massaioli
, and
S.
Succi
, “
Extended self-similarity in turbulent flows
,”
Phys. Rev. E
,
48
,
R29
R32
(
1993
).
29.
O.
Kamps
and
R.
Friedrich
, “
Lagrangian statistics in forced two-dimensional turbulence
,”
Phys. Rev. E
78
,
036321
(
2008
).
30.
D.
Mitra
and
R.
Pandit
, “
Varieties of dynamic multiscaling in fluid turbulence
,”
Phys. Rev. Lett.
93
,
024501
(
2004
).
31.
L.
Biferale
,
E.
Calzavarini
, and
F.
Toschi
, “
Multi-time multi-scale correlation functions in hydrodynamic turbulence
,”
Phys. Fluids
23
,
085107
(
2011
).
32.
O.
Kamps
,
R.
Friedrich
, and
R.
Grauer
, “
Exact relation between Eulerian and Lagrangian velocity increment statistics
,”
Phys. Rev. E
79
,
066301
(
2009
).
You do not currently have access to this content.