An acoustic field generated by a light-weight, low-power acoustic driver is shown to increase the critical heat flux during pool boiling by about 17%. It does this by facilitating the removal of vapor bubbles from the heated surface and suppressing the instability that leads to the transition to film boiling at the critical heat flux. Bubble removal is enhanced because the acoustic field induces capillary waves on the surface of a vapor bubble that interact with the bubble contact line on the heated surface causing the contact line to contract and detach the bubble from the surface. The acoustic field also produces a radiation pressure that helps to facilitate the bubble detachment process and also suppresses the transition to film boiling. The mechanisms associated with these interactions are explored using three different experimental setups with acoustic forcing: an air bubble on the underside of a horizontal surface, a single vapor bubble on the top side of a horizontal heated surface, and pool boiling from a horizontal heated surface. Measurements of the capillary waves induced on the bubbles, bubble motion, and heat transfer from the heated surface were performed to isolate and identify the dominant forces involved in these acoustically forced motions.

1.
S. M.
Sellers
, “
Heat transfer resulting from the evaporation of liquid droplets on a horizontal heated surface
,” Ph.D. dissertation (
School of Mechanical Engineering, Georgia Institute of Technology
, Atlanta, GA,
2000
).
2.
M.
Zerby
and
M.
Kuszewski
, “
Final report on next generation thermal management (NGTM) for power electronics
,” NSWCCD Technical Report TR-82-2002012,
2002
.
3.
A.
Bar-Cohen
, “
Thermal management of electronic components with dielectric liquids
,”
JSME Int. J., Ser. B
36
,
1
(
1993
).
4.
I.
Mudawar
, “
Assessment of high-heat-flux thermal management schemes
,”
IEEE Trans. Compon. Packag. Technol.
24
,
122
(
2001
).
5.
B.
Agostini
,
M.
Fabbri
,
J. E.
Park
,
L.
Wojtan
,
J. R.
Thome
, and
B.
Michel
, “
State of the art of high heat flux cooling technologies
,”
Heat Transfer Eng.
28
,
258
(
2007
).
6.
S.
Heffington
,
S.
Tillery
,
M.
Smith
, and
A.
Glezer
, “
Enhanced boiling heat transfer by submerged, vibration induced jets
,” in
Proceedings of the Ninth International Workshop on Thermal Investigations of ICs and Systems: Therminic, Aix-en-Provence, France, 24–26 September 2003
(
Laboratoire TIMA
,
Grenoble, France
,
2003
), pp.
33
38
.
7.
S. W.
Tillery
,
S.
Heffington
,
M. K.
Smith
, and
A.
Glezer
, “
Boiling heat transfer enhancement by submerged, vibration induced jets
,” in
Proceedings of ITherm 2004: Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV
(
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
2004
), pp.
17
22
.
8.
S. W.
Tillery
,
S. N.
Heffington
,
M. K.
Smith
, and
A.
Glezer
, “
Boiling heat transfer enhancement using a submerged, vibration-induced jet
,”
J. Electron. Packag.
128
,
145
(
2006
).
9.
S.
Heffington
and
A.
Glezer
, “
Enhanced boiling heat transfer by submerged ultrasonic vibrations
,” in
Proceedings of the Tenth International Workshop on Thermal Investigations of ICs and Systems: Therminic, Sophia Antipolis, Cote d’Azur, France, 29 September–1 October 2004
(
Laboratoire TIMA
,
Grenoble, France
2004
), pp.
217
221
.
10.
S. E.
Isakoff
, “
Effect of an ultrasonic field on boiling heat transfer – Exploratory investigation
,” in
1956 Heat Transfer and Fluid Mechanics Institute—Preprints of Papers
, chaired by
S. J.
Kline
,
C. R.
Garbett
, and
E. R.
Van Driest
(
Stanford University Press
,
Stanford, CA
,
1956
), p.
15
.
11.
S. W.
Wong
and
W. Y.
Chon
, “
Effects of ultrasonic vibrations on burnout heat flux and critical temperature difference
,”
Can. J. Chem. Eng.
45
,
384
(
1967
).
12.
K. A.
Park
and
A. E.
Bergles
, “
Ultrasonic enhancement of saturated and subcooled pool boiling
,”
Int. J. Heat Mass Trans.
31
,
664
(
1988
).
13.
H.-Y.
Kim
,
Y. G.
Kim
, and
B. H.
Kang
, “
Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration
,”
Int. J. Heat Mass Trans.
47
,
2831
(
2004
).
14.
J. S.
Sitter
,
T. J.
Snyder
,
J. N.
Chung
, and
P. L.
Marston
, “
Acoustic field interaction with a boiling system under terrestrial gravity and microgravity
,”
J. Acoust. Soc. Am.
104
,
2561
(
1998
).
15.
J. S.
Sitter
,
T. J.
Snyder
,
J. N.
Chung
, and
P. L.
Marston
, “
Terrestrial and microgravity pool boiling heat transfer from a wire in an acoustic field
,”
Int. J. Heat Mass Trans.
41
,
2143
(
1998
).
16.
Y.
Hao
,
H. N.
Oguz
, and
A.
Prosperetti
, “
The action of pressure-radiation forces on pulsating vapor bubbles
,”
Phys. Fluids
13
,
1167
(
2001
).
17.
T. G.
Leighton
,
The Acoustic Bubble
(
Academic
,
San Diego, CA
,
1994
).
18.
V.
Bjerknes
,
Fields of Force
(
Columbia University
,
New York
,
1906
).
19.
A.
Eller
, “
Force on a bubble in a standing acoustic wave
,”
J. Acoust. Soc. Am.
43
,
170
(
1968
).
20.
T.
Barbat
,
N.
Ashgriz
, and
C.-S.
Liu
, “
Dynamics of two interacting bubbles in an acoustic field
,”
J. Fluid Mech.
389
,
137
(
1999
).
21.
L. A.
Crum
, “
Bjerknes forces on bubbles in a stationary sound field
,”
J. Acoust. Soc. Am.
57
,
1363
(
1975
).
22.
R. G.
Holt
and
E. H.
Trinh
, “
Faraday wave turbulence on a spherical liquid shell
,”
Phys. Rev. Lett.
77
,
1274
(
1996
).
23.
M. J.
Lighthill
,
Waves in Fluids
(
Cambridge University Press
,
Cambridge, England
,
1978
).
24.
M.
Faraday
, “
On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces
,”
Phil. Trans. Roy. Soc. Lond.
121
,
299
(
1831
).
25.
Y.
Fujita
and
S.
Uchida
, “
Enhancement of nucleate boiling on composite surfaces
,”
Heat Trans. Jpn. Res.
27
,
216
(
1998
).
26.
R. L.
Hummel
, “
Means for increasing the heat transfer coefficient between a wall and boiling liquid
,” U.S. patent 3,207,209 (
1965
).
27.
J. H.
Lienhard
,
V. K.
Dhir
, and
D. M.
Riherd
, “
Peak pool boiling heat-flux measurements on finite horizontal flat plates
,”
J. Heat Transfer.
95
,
477
(
1973
).
28.
K. N.
Rainey
and
S. M.
You
, “
Pool boiling heat transfer from plain and microporous, square pin-finned surfaces in saturated FC-72
,”
J. Heat Trans.
122
,
509
(
2000
).
29.
H.
Honda
,
H.
Takamatsu
, and
J.
Wei
, “
Enhanced boiling of FC-72 on silicon chips with micro-pin-fins and submicron-scale roughness
,”
J. Heat Trans.
124
,
383
(
2002
).
30.
S.
Launay
,
A. G.
Fedorov
,
Y.
Joshi
,
A.
Cao
, and
P. M.
Ajayan
, “
Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement
,”
Microelectron. J.
37
,
1158
(
2005
).
31.
S. J.
Penley
and
R. A.
Wirtz
, “
Correlation of subatmospheric pressure, saturated, pool boiling of water on a structured-porous surface
,”
J. Heat Trans.
133
,
041501
(
2011
).
32.
D.
Cooke
and
S. G.
Kandlikar
, “
Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels
,”
J. Heat Trans.
133
,
052902
(
2011
).
33.
S. G.
Kandlikar
, “
A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation
,”
ASME J. Heat Transfer
123
,
1071
(
2001
).
34.
S. S.
Kutateladze
and
L. L.
Schneiderman
, Experimental Study of Influence of Temperature of Liquid on Change in the Rate of Boiling, USAEC Report: 95-100,
1953
.
35.
J. H.
Lienhard
and
K. B.
Keeling
, Jr.
, “
An induced-convection effect upon the peak-boiling heat flux
,”
J. Heat Trans.
92
,
1
(
1970
).
You do not currently have access to this content.