In most technical applications involving cavitation, vapor bubbles occur in clouds, and their collapse is affected by the interaction with neighboring bubbles. One approach to study the influence of these interactions is the investigation of the collapse of cavity arrays in water under shock wave loading. We describe in detail the collapse mechanisms during the collapse of a horizontal cavity array, with particular consideration of maximum pressures. As general trend, we find a pressure amplification in consecutive cavity collapses. However, by increasing the number of cavities, we are able to demonstrate that the amplification is not monotonic. A parameter study of the bubble separation distance in horizontal arrays shows that a smaller distance generally, but not necessarily, results in larger collapse pressure. Exceptions from the general trend are due to the very complex shock and expansion-wave interactions and demonstrate the importance of using state-of-the-art numerical methods. By varying boundary conditions, we illustrate the significance of large test sections in experimental investigations, as the expansion wave emitted at a free surface has a large effect on the collapse dynamics.
Skip Nav Destination
Article navigation
Research Article|
May 18 2012
Numerical investigation of collapsing cavity arrays Available to Purchase
E. Lauer;
E. Lauer
a)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
Search for other works by this author on:
X. Y. Hu;
X. Y. Hu
b)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
Search for other works by this author on:
S. Hickel;
S. Hickel
c)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
Search for other works by this author on:
N. A. Adams
N. A. Adams
d)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
Search for other works by this author on:
E. Lauer
a)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
X. Y. Hu
b)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
S. Hickel
c)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
N. A. Adams
d)
Lehrstuhl für Aerodynamik und Strömungsmechanik,
Technische Universität München
, Boltzmannstr. 15, 85748 Garching b. München, Germany
a)
Electronic mail: [email protected].
b)
Electronic mail: [email protected].
c)
Electronic mail: [email protected].
d)
Electronic mail: [email protected].
Physics of Fluids 24, 052104 (2012)
Article history
Received:
November 30 2011
Accepted:
March 27 2012
Citation
E. Lauer, X. Y. Hu, S. Hickel, N. A. Adams; Numerical investigation of collapsing cavity arrays. Physics of Fluids 1 May 2012; 24 (5): 052104. https://doi.org/10.1063/1.4719142
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Phase behavior of Cacio e Pepe sauce
G. Bartolucci, D. M. Busiello, et al.
Direct numerical simulations of immiscible two-phase flow in rough fractures: Impact of wetting film resolution
R. Krishna, Y. Méheust, et al.
Chinese Academy of Science Journal Ranking System (2015–2023)
Cruz Y. Li (李雨桐), 李雨桐, et al.
Related Content
Numerical study of pressure loads generated by a shock-induced bubble collapse
Physics of Fluids (November 2021)
Effect of shock impedance of mesoscale inclusions on the shock-to-detonation transition in liquid nitromethane
Physics of Fluids (February 2024)
Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid
Physics of Fluids (March 2015)
The influence of radiative heat transfer upon the collapse of a cylindrical shock wave
Physics of Fluids (September 2001)
Numerical investigation of rising bubble wake and shape variations
Physics of Fluids (December 2009)