In most technical applications involving cavitation, vapor bubbles occur in clouds, and their collapse is affected by the interaction with neighboring bubbles. One approach to study the influence of these interactions is the investigation of the collapse of cavity arrays in water under shock wave loading. We describe in detail the collapse mechanisms during the collapse of a horizontal cavity array, with particular consideration of maximum pressures. As general trend, we find a pressure amplification in consecutive cavity collapses. However, by increasing the number of cavities, we are able to demonstrate that the amplification is not monotonic. A parameter study of the bubble separation distance in horizontal arrays shows that a smaller distance generally, but not necessarily, results in larger collapse pressure. Exceptions from the general trend are due to the very complex shock and expansion-wave interactions and demonstrate the importance of using state-of-the-art numerical methods. By varying boundary conditions, we illustrate the significance of large test sections in experimental investigations, as the expansion wave emitted at a free surface has a large effect on the collapse dynamics.

1.
L.
Rayleigh
, “
On the pressure developed in a liquid during the collapse of a spherical cavity
,”
Philos. Mag.
34
,
94
(
1917
).
2.
M. S.
Plesset
, “
The dynamics of cavitation bubbles
,”
ASME J. Appl. Mech.
16
,
228
(
1949
).
3.
F. R.
Gilmore
, “
The growth and collapse of a spherical bubble in a viscous compressible fluid
,” California Institute of Technology Report No. 26–4 (
1952
).
4.
M.
Kornfeld
and
L.
Suvorov
, “
On the destructive action of cavitation
,”
J. Appl. Phys.
15
,
495
(
1944
).
5.
T. P.
Benjamin
and
A. T.
Ellis
, “
The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries
,”
Philos. Trans. R. Soc. London, Ser. A
260
,
221
(
1966
).
6.
M. S.
Plesset
and
R. B.
Chapman
, “
Collapse of an initially spherical vapour cavity in the neighbourhood of a solid wall
,”
J. Fluid Mech.
47
,
283
(
1971
).
7.
W.
Lauterborn
and
H.
Bolle
, “
Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary
,”
J. Fluid Mech.
72
,
391
(
1975
).
8.
O.
Lindau
and
W.
Lauterborn
, “
Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall
,”
J. Fluid Mech.
479
,
327
(
2003
).
9.
C. L.
Mader
, “
Initiation of detonation by the interaction of shocks with density discontinuities
,”
Phys. Fluids
8
,
1811
(
1965
).
10.
J. P.
Dear
and
J. E.
Field
, “
A study of the collapse of arrays of cavities
,”
J. Fluid Mech.
190
,
409
(
1988
).
11.
Y.
Tomita
and
A.
Shima
, “
Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse
,”
J. Fluid Mech.
169
,
535
(
1986
).
12.
A.
Philipp
and
W.
Lauterborn
, “
Cavitation erosion by single laser-produced bubbles
,”
J. Fluid Mech.
361
,
75
(
1998
).
13.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Oxford University Press
,
1995
).
14.
C. M.
Tarver
,
S. K.
Chidester
, and
A. L.
Nichols
, “
Critical conditions for impact- and shock-induced hot spots in solid explosives
,”
J. Phys. Chem.
100
,
5794
(
1996
).
15.
N. K.
Bourne
, “
On the collapse of cavities
,”
Shock Waves
11
,
447
(
2002
).
16.
E. F.
Timm
and
F. G.
Hammitt
, “
Bubble collapse adjacent to a rigid wall, a flexible wall, and a second bubble
,” Proc. Am. Soc. Mech. Eng. Cavitation Forum (
1971
), p.
18
.
17.
W.
Lauterborn
,
Cavitation and Inhomogeneities in Underwater Acoustics
(
Springer-Verlag
,
New York
,
1980
), pp.
3
12
.
18.
J. R.
Blake
,
P. B.
Robinson
,
A.
Shima
, and
Y.
Tomita
, “
Interaction of two cavitation bubbles with a rigid boundary
,”
J. Fluid Mech.
255
,
707
(
1993
).
19.
N.
Bremond
,
M.
Arora
,
S. M.
Dammer
, and
D.
Lohse
, “
Interaction of cavitation bubbles on a wall
,”
Phys. Fluids
18
,
121505
(
2006
).
20.
M. M.
Chaudhri
,
L.-A.
Almgreu
, and
A.
Perrson
, “
High-speed photography of the interaction of shocks with voids in condensed media
,” in
Proceedings of 15th International Conference on High Speed Photography and Phototonics
[
Proc. SPIE
348
,
388
(
1982
)].
21.
W.
Lauterborn
and
T.
Kurz
, “
Physics of bubble oscillations
,”
Rep. Prog. Phys.
73
,
106501
(
2010
).
22.
J. H.
Brunton
, “
Erosion by liquid shock
,”
Proceedings of 2nd International Conference on Rain Erosion
(
Royal Aircraft Establishment
,
UK
,
1967
), p.
291
.
23.
N. K.
Bourne
and
J. E.
Field
, “
Cavity collapse in a liquid with solid particles
,”
J. Fluid Mech.
259
,
149
(
1994
).
24.
A. B.
Swantek
and
J. M.
Austin
, “
Collapse of void arrays under stress wave loading
,”
J. Fluid Mech.
649
,
399
(
2010
).
25.
G. J.
Ball
,
B. P.
Howell
,
T. G.
Leighton
, and
M. J.
Schofield
, “
Shock-induced collapse of a cylindrical air cavity in water: a free-Lagrange simulation
,”
Shock Waves
10
,
265
(
2000
).
26.
I.
Akhatov
,
O.
Lindau
,
A.
Topolnikov
,
R.
Mettin
,
N.
Vakhitova
, and
W.
Lauterborn
, “
Collapse and rebound of a laser-induced cavitation bubble
,”
Phys. Fluids
13
,
2805
(
2001
).
27.
C. K.
Turangan
,
A. R.
Jamaluddin
,
G. J.
Ball
, and
T. G.
Leighton
, “
Free-Lagrange simulations of the expansion and jetting collapse of air bubbles in water
,”
J. Fluid Mech.
598
,
1
(
2008
).
28.
E.
Johnson
and
T.
Colonius
, “
Numerical simulations of non-spherical bubble collapse
,”
J. Fluid Mech.
629
,
231
(
2009
).
29.
R. K. S.
Hankin
, “
The Euler equations for multiphase compressible flow in conservation form
,”
J. Comp. Phys.
172
,
808
(
2001
).
30.
X. Y.
Hu
,
B. C.
Khoo
,
N. A.
Adams
, and
F. L.
Huang
, “
A conservative interface method for compressible flows
,”
J. Comp. Phys.
219
,
553
(
2006
).
31.
S.
Müller
,
P.
Helluy
, and
J.
Ballmann
, “
Numerical simulation of a single bubble by compressible two-phase fluids
,”
Int. J. Numer. Methods Fluids
62
,
591
(
2010
).
32.
E.
Lauer
,
X. Y.
Hu
,
S.
Hickel
, and
N. A.
Adams
, “
Numerical investigation of cavitation bubble dynamics near walls
,” in
Shock Waves
, edited by
K.
Kontis
(
Springer
,
Heidelberg
,
2012
).
33.
N. K.
Bourne
and
J. E.
Field
, “
Shock-induced collapse of single cavities in liquids
,”
J. Fluid Mech.
244
,
225
(
1992
).
34.
R.
Fedkiw
,
T.
Aslam
,
B.
Merriman
, and
S.
Osher
, “
A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)
,”
J. Comp. Phys.
152
,
457
(
1999
).
35.
C. W.
Shu
and
S.
Osher
, “
Efficient implementation of essentially non-oscillatory shock capturing schemes
,”
J. Comp. Phys.
77
,
439
(
1988
).
36.
G. S.
Jiang
and
C. W.
Shu
, “
Efficient implementation of weighted ENO schemes
,”
J. Comp. Phys.
126
,
202
(
1996
).
37.
S.
Hickel
,
M.
Mihatsch
, and
S. J.
Schmidt
, “
Implicit large eddy simulation of cavitation in micro channel flows
,”
Proceedings of WIMRC 3rd International Cavitation Forum
,
University of Warwick
,
UK
,
2011
.
38.
J.-J.
Camus
, “
High-speed flow in impact and its effect on solid surfaces
,” Ph.D. dissertation,
University of Cambridge
,
1971
.
39.
J.-F.
Haas
and
B.
Sturtevant
, “
Interaction of weak shock waves with cylindrical and spherical inhomogeneities
,”
J. Fluid Mech.
181
,
41
(
1987
).
40.
J. H. J.
Niederhaus
,
J. A.
Greenough
,
J. G.
Oakley
,
D.
Ranjan
,
M. H.
Anderson
, and
R.
Bonazza
, “
A computational parameter study for the three-dimensional shock-bubble interaction
,”
J. Fluid Mech.
594
,
85
(
2008
).
41.
J. P.
Dear
,
J. E.
Field
, and
A. J.
Walton
, “
Gas compression and jet formation in cavities collapsed by a shock wave
,”
Nature (London)
332
,
505
(
1988
).
You do not currently have access to this content.