A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here, we simulate this experiment numerically using the discrete viscous threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia and of deformation by stretching, bending, and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory and agree closely with the experimental phase diagram of Morris et al [Phys. Rev. E77, 066218 (2008)]

. We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency Ωc of steady coiling obtained in the limit of zero belt speed. In particular, the intriguing “alternating loops” pattern is produced by combining the first five multiples of Ωc/3.

1.
Lord
Rayleigh
, “
On the theory of long waves and bores
,”
Proc. R. Soc. London, Ser. A
90
(
619
),
324
328
(
1914
).
2.
E.
Watson
, “
The radial spread of a liquid jet over a horizontal plane
,”
J. Fluid Mech.
20
,
481
499
(
1964
).
3.
C.
Ellegaard
,
A. E.
Hansen
,
A.
Haaning
,
K.
Hansen
,
A.
Marcussen
,
T.
Bohr
,
J. L.
Hansen
, and
S.
Watanabe
, “
Creating corners in kitchen sink flows
,”
Nature (London)
392
,
767
768
(
1998
).
4.
G.
Barnes
and
R.
Woodcock
, “
Liquid rope-coil effect
,”
Am. J. Phys.
26
,
205
209
(
1958
).
5.
M.
Habibi
,
Y.
Rahmani
,
D.
Bonn
, and
N. M.
Ribe
, “
Buckling of liquid columns
,”
Phys. Rev. Lett.
104
,
074301
(
2010
).
6.
M.
Habibi
,
P. C.F.
Møller
,
N. M.
Ribe
, and
D.
Bonn
, “
Spontaneous generation of spiral waves by a hydrodynamic instability
,”
Europhys. Lett.
81
,
38004
(
2008
).
7.
A.
Kaye
, “
A bouncing liquid stream
,”
Nature (London)
197
,
1001
1002
(
1963
).
8.
A.
Herczynski
,
C.
Cernuschi
, and
L.
Mahadevan
, “
Painting with drops, jets, and sheets
,”
Phys. Today
64
(
6
),
31
36
(
2011
).
9.
S.
Chiu-Webster
and
J.
Lister
, “
The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine'
,”
J. Fluid Mech.
569
,
89
111
(
2006
).
10.
G. I.
Taylor
, “
Instability of jets, threads and sheets of viscous fluid
,” in
Proceedings of the 12th International Congress of Applied Mechanics
, edited by
M.
Hetenyi
and
W.
Vincenti
(
Springer
,
Berlin
,
1969
).
11.
N. M.
Ribe
,
J. R.
Lister
, and
S.
Chiu-Webster
, “
Stability of a dragged viscous thread: Onset of ‘stitching' in a fluid-mechanical ‘sewing machine'
,”
Phys. Fluids
18
,
124105
(
2006
).
12.
S. W.
Morris
,
J.
Dawes
,
N.
Ribe
, and
J.
Lister
, “
Meandering instability of a viscous thread
,”
Phys. Rev. E
77
,
066218
(
2008
).
13.
M. J.
Blount
and
J. R.
Lister
, “
The asymptotic structure of a slender dragged viscous thread
,”
J. Fluid Mech.
674
,
489
521
(
2011
).
14.
M.
Bergou
,
B.
Audoly
,
E.
Vouga
,
M.
Wardetzky
, and
E.
Grinspun
, “
Discrete viscous threads
,”
Trans. Graph.
29
,
116
(
2010
).
15.
N. M.
Ribe
, “
Coiling of viscous jets
,”
Proc. R. Soc. London
460
,
3223
3239
(
2004
).
16.
L.
Mahadevan
,
W.
Ryu
, and
A.
Samuel
, “
Fluid rope trick investigated
,”
Nature (London)
392
,
140
(
1998
).
17.
N.
Ribe
,
H.
Huppert
,
M.
Hallworth
,
M.
Habibi
, and
D.
Bonn
, “
Multiple coexisting states of liquid rope coiling
,”
J. Fluid Mech.
555
,
275
297
(
2006
).
18.
N. M.
Ribe
,
M.
Habibi
, and
D.
Bonn
, “
Stability of liquid rope coiling
,”
Phys. Fluids
18
,
084102
(
2006
).
19.
F. R. S.
Trouton
, “
On the coefficient of viscous traction and its relation to that of viscosity
,”
Proc. R. Soc. London A
77
,
426
440
(
1906
).
20.
J. D.
Buckmaster
,
A.
Nachman
, and
L.
Ting
, “
The buckling and stretching of a viscida
,”
J. Fluid Mech.
69
,
1
20
(
1975
).
21.
M.
Bergou
, “
Discrete geometric dynamics and artistic control of curves and surfaces
,” Ph.D. dissertation (
Columbia University
,
2010
).
22.
R. L.
Welch
,
B.
Szeto
, and
S. W.
Morris
, “
Frequency structure of the nonlinear instability of a dragged viscous thread
,” private communication (
2011
).
You do not currently have access to this content.