A Lennard-Jones (LJ) binary interaction model for dilute gases is obtained by representing the exact scattering angle as a polynomial expansion in non-dimensional collision variables. Rigorous theoretical verification of the model is performed by comparison with exact values of diffusion and viscosity cross sections and related collision integrals. The collision quantities given by the polynomial approximation model agree within 3.5% with those of the exact LJ scattering. The proposed model is compared in detail with the generalized soft sphere (GSS) model which is the closest in terms of fidelity among existing direct simulation Monte Carlo collision models. The GSS model's performance for the collision integral used in the first approximate of viscosity coefficient is comparable to the proposed model for most reduced temperatures. However, other collision integrals deviate significantly, even at moderate reduced temperatures. The high fidelity of the proposed model at low reduced temperatures enables non-equilibrium simulations of gases with deep LJ potential well such as metallic vapors. The model is based on the scattering angle as opposed to viscosity or diffusion coefficients and provides a direct link to molecular dynamics simulations.

1.
G. A.
Bird
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
, 2nd ed. (
Oxford University Press
,
New York
,
1994
).
2.
F.
Cheremisin
, “
Numerical methods for the direct solution of the kinetic boltzmann equation
,”
USSR Comput. Math. Math. Phys.
25
,
156
(
1985
).
3.
S.
Yen
, “
Numerical solution of the nonlinear Boltzmann equation for nonequilibrium gas flow problems
,”
Annu. Rev. Fluid Mech.
16
,
67
(
1984
).
4.
Z.
Tan
,
Y. K.
Chen
,
P. L.
Varghese
, and
J. L.
Howell
, “
New numerical strategy to evaluate the collision integral of the Boltzmann equation
,”
Rarefied Gas Dynamics: Theoretical and Computational Techniques
,
AIAA
,
Washington DC
(
1989
), p. 359.
5.
V.
Aristov
,
Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows
(
Springer
,
Netherlands
,
2001
).
6.
G.
Bird
, “
Approach to translational equilibrium in a rigid sphere gas
,”
Phys. Fluids
6
,
1518
(
1963
).
7.
K.
Koura
and
H.
Matsumoto
, “
Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential
,”
Phys. Fluids A: Fluid Dyn.
3
,
2459
(
1991
).
8.
H.
Hassan
and
D.
Hash
, “
A generalized hard-sphere model for Monte Carlo simulation
,”
Phys. Fluids A: Fluid Dyn.
5
,
738
(
1993
).
9.
J.
Fan
, “
A generalized soft-sphere model for Monte Carlo simulation
,”
Phys. Fluids
14
,
4399
(
2002
).
10.
J. O.
Hirschfelder
,
R. B.
Bird
, and
E. L.
Spotz
, “
The transport properties for non-polar gases
,”
J. Chem. Phys.
16
(10),
968
(
1948
).
11.
R.
Bird
,
W.
Stewart
, and
E.
Lightfoot
,
Transport Phenomena
(
Wiley
,
New York
,
2004
).
12.
G.
Pham-Van-Diep
,
D.
Erwin
, and
E.
Muntz
, “
Nonequilibrium molecular motion in a hypersonic shock wave
,”
Science
245
,
624
(
1989
).
13.
J.
Lengrand
,
J.
Allegre
,
A.
Chpoun
, and
M.
Raffin
, “
Rarefied hypersonic flow over a sharp flat plate- numerical and experimental results
,”
Rarefied Gas Dyn.: Space Sci. Eng.
160
,
276
(
1994
).
14.
M.
Holden
, “
Development and code evaluation studies in hypervelocity flows in the LENS facility
,” in
Aerothermodynamics for Space Vehicles
,
European Space Agency
,
Paris, France
(
1995
), Vol. 367, p.
319
.
15.
D.
Smith
,
Thin-Film Deposition: Principles and Practice
(
McGraw-Hill
,
New York
,
1995
).
16.
R.
Farrow
,
Molecular Beam Epitaxy: Applications to Key Materials
(
Noyes Publications
,
New Jersey
,
1995
).
17.
F.
Tcheremissine
, “
Solution to the Boltzmann kinetic equation for high-speed flows
,”
Comput. Math. Math. Phys.
46
,
315
(
2006
).
18.
F.
Sharipov
and
G.
Bertoldo
, “
Numerical solution of the linearized Boltzmann equation for an arbitrary intermolecular potential
,”
J. Comput. Phys.
228
,
3345
(
2009
).
19.
A.
Venkattraman
and
A.
Alexeenko
, “
DSMC collision model for the Lennard-Jones potential: Efficient algorithm and verification
,” in
Proceedings of the 42nd AIAA Thermophysics Conference, AIAA, 2011-3313
(
AIAA
,
Honolulu, Hawaii
,
2011
).
20.
S.
Chapman
and
T.
Cowling
,
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
(
Cambridge University Press
,
Cambridge, England
,
1990
).
21.
K.
Gu
,
C.
Watkins
, and
J.
Koplik
, “
Atomistic hybrid DSMC/NEMD method for nonequilibrium multiscale simulations
,”
J. Comput. Phys.
229
,
1381
(
2010
).
22.
J.
Kim
,
O.
Kwon
, and
C.
Park
, “
Modification and expansion of the generalized soft-sphere model to high temperature based on collision integrals
,”
Phys. Fluids
20
,
017105
(
2008
).
23.
P.
Valentini
and
T. E.
Schwartzentruber
, “
Large-scale molecular dynamics simulations of normal shock waves in dilute argon
,”
Phys. Fluids
21
,
066
(
2009
).
24.
H.
Matsumoto
and
K.
Koura
, “
Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones potential
,”
Phys. Fluids A: Fluid Dyn.
3
,
30
(
1991
).
25.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
26.
A.
Venkattraman
and
A.
Alexeenko
, “
Direct simulation Monte Carlo modeling of e-beam metal deposition
,”
J. Vac. Sci. Technol. A
28
,
916
(
2010
).
27.
P.
Rabinowitz
and
G.
Weiss
, “
Tables of abscissas and weights for numerical evaluation of integrals of the form
$\int _0^\infty e^{-x} x^n f (x) dx$
0exxnf(x)dx
,”
Math. Tables Aids Comput.
13
,
285
(
1959
).
28.
J.
Kestin
,
K.
Knierim
,
E. A.
Mason
,
B.
Najafi
,
S. T.
Ro
, and
M.
Waldman
, “
Equilibrium and transport properties of the noble gases and their mixtures at low density
,”
J. Phys. Chem. Ref. Data
13
,
229
(
1984
).
You do not currently have access to this content.