The transient response of optimal linear perturbations of liquid metal flow under a strong axial magnetic field in an electrically insulated rectangular duct is considered. The focus is on the subcritical regime, below the onset of von Kármán vortex shedding, to determine the role of optimal disturbances in developing wake instabilities. In this configuration, the flow is quasi-two-dimensional and can be solved over a two-dimensional domain. Parameter ranges considered include Reynolds numbers

$50 \le \mbox{\textit {Re}}\lesssim 2100$
50Re2100⁠, modified Hartmann numbers
$50 \le {\mbox{\textit {Ha}}^\star }\lesssim 500$
50Ha500
, and blockage ratios 0.1 ⩽ β ⩽ 0.4. In some instances, the optimal disturbances are found to generate energy growth of greater than four orders of magnitude. Variation in the wake recirculation length in the steady flow regime is determined as a function of Reynolds number, Hartman number, and blockage ratio, and a universal expression is proposed. For all β, the energy amplification of the disturbances is found to decrease significantly with increasing Hartmann number and the peak growth shifts towards smaller times. The optimal initial disturbances are consistently located in the vicinity of the boundary layer separation from the cylinder, and the structure of these disturbances is consistent for all Hartmann numbers and blockage ratios considered in this study. The time evolution of the optimal perturbations is presented, and is shown to correspond to sinuous oscillations of the shear layer downstream of the wake recirculation. The critical Reynolds number for the onset of growth at different Hartmann numbers and blockage ratios is determined. It is found that it increases rapidly with increasing Hartmann number and blockage ratio. For all β, the peak energy amplification grows exponentially with
$\mbox{\textit {Re}}$
Re
at low and high Hartmann numbers. Direct numerical simulation in which the inflow is perturbed by a random white noise confirms the predictions arising from the transient growth analysis: that is, the perturbation excites and feeds energy into the global mode.

1.
S.
Münevver
, “
Magnetohydrodynamic flow in a rectangular duct
,”
Int. J. Numer. Methods Fluids
7
,
697
(
1987
).
2.
I. R.
Kirillov
,
C. B.
Reed
,
L.
Barleon
, and
K.
Miyazaki
, “
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
,”
Fusion Eng. Des.
27
,
553
(
1995
).
3.
O. A.
Lielausis
, “
Liquid-metal magnetohydrodynamics
,”
At. Energy Rev.
13
,
527
(
1975
).
4.
L. G.
Kit
,
S. V.
Turuntaev
, and
A. B.
Tsinober
, “
Investigation with a conduction anemometer of the effect of a magnetic field on disturbances in the wake of a cylinder
,”
Magnetohydrodynamics
6
(
3
),
331
(
1970
).
5.
Yu. B.
Kolesnikov
and
A. B.
Tsinober
, “
Two-dimensional turbulent flow behind a circular cylinder
,”
Magnetohydrodynamics
8
(
3
),
300
(
1972
).
6.
D.
Papailio
, “
Turbulent magneto-fluid-mechanic vortex streets
,”
Bull. Amer. Phys. Soc.
18
(
11
),
1484
(
1973
).
7.
M.
Frank
,
L.
Barleon
, and
U.
Muller
, “
Visual analysis of two-dimensional magnetohydrodynamics
,”
Phys. Fluids
13
,
2287
(
2001
).
8.
B.
Muck
,
C.
Gunther
,
U.
Muller
, and
L.
Buhler
, “
Three-dimensional MHD flows in rectangular ducts with internal obstacles
,”
J. Fluid Mech.
418
,
265
(
2000
).
9.
V.
Dousset
and
A.
Pothérat
, “
Numerical simulations of a cylinder wake under a strong axial magnetic field
,”
Phys. Fluids
20
,
017104
(
2008
).
10.
W. K.
Hussam
,
M. C.
Thompson
, and
G. J.
Sheard
, “
Dynamics and heat transfer in a quasi-two-dimensional MHD flow past a circular cylinder in a duct at high Hartmann number
,”
Int. J. Heat Mass Transfer
54
,
1091
(
2011
).
11.
L.
Barleon
,
U.
Burr
,
R.
Stieglitz
, and
M.
Frank
, “
Heat transfer of a MHD flow in a rectangular duct
,” in
Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows: Selected Papers of the PAMIR Conference held in Aussois, France, 22-26 September 1997
,
Fluid Mechanics and its Applications
Vol.
51
, edited by
A.
Alemany
,
P.
Marty
, and
J. P.
Thibault
(
Kluwer
,
Aussois, France
,
1997
), pp.
305
309
.
12.
J. A.
Shercliff
, “
Some duct flow problems at high Hartmann number
,”
Z. Angew. Math. Phys.
26
,
537
(
1975
).
13.
P. A.
Davidson
, “
The role of angular momentum in the magnetic damping of turbulence
,”
J. Fluid Mech.
336
,
123
(
1997
).
14.
A.
Pothérat
,
J.
Sommeria
, and
R.
Moreau
, “
An effective two-dimensional model for MHD flows with transverse magnetic field
,”
J. Fluid Mech.
424
,
75
(
2000
).
15.
J.
Sommeria
and
R.
Moreau
, “
Why, how, and when, MHD turbulence becomes two-dimensional
,”
J. Fluid Mech.
118
,
507
(
1982
).
16.
T.
Alboussiere
,
V.
Uspenski
, and
R.
Moreau
, “
Quasi-2D MHD turbulent shear layers
,”
Exp. Therm. Fluid Sci.
20
,
19
(
1999
).
17.
O. V.
Andreev
and
Y.
Kolesnikov
, “
MHD instabilities at transverse flow around a circular cylinder in an axial magnetic field
,” in
Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows: Selected Papers of the PAMIR Conference held in Aussois, France, 22–26 September, 1997
,
Fluid Mechanics and its Applications
Vol.
51
, edited by
A.
Alemany
,
P.
Marty
, and
J. P.
Thibault
(
Kluwer
,
Aussois, France
), pp.
205
210
.
18.
U.
Burr
,
L.
Barleon
,
U.
Muller
, and
A.
Tsinober
, “
Turbulent transport of momentum and heat in magnetohydrodynamic rectangular duct flow with strong sidewall jets
,”
J. Fluid Mech.
406
,
247
(
2000
).
19.
R.
Klein
,
A.
Pothérat
, and
A.
Alferenok
, “
Experiment on a confined electrically driven vortex pair
,”
Phys. Rev. E
79
,
016304
(
2009
).
20.
L.
Buhler
, “
Instabilities in quasi-two-dimensional magnetohydrodynamic flows
,”
J. Fluid Mech.
326
,
125
(
1996
).
21.
Y. B.
Kolesnikov
and
A. B.
Tsinober
, “
Experimental investigation of two-dimensional turbulence behind a grid
,”
Fluid Dyn.
9
,
621
(
1974
).
22.
J.
Moreau
and
R.
Sommeria
, “
Electrically driven vortices in a strong magnetic field
,”
J. Fluid Mech.
189
,
553
(
1988
).
23.
P. J.
Schmid
and
D. S.
Henningson
,
Stability and Transition in Shear Flows
(
Springer
,
New York
,
2001
).
24.
S. C.
Reddy
,
P. J.
Schmid
,
J. S.
Baggett
, and
D. S.
Henningson
, “
On stability of streamwise streaks and transition thresholds in plane channel flows
,”
J. Fluid Mech.
365
,
269
(
1998
).
25.
O. Y.
Zikanov
, “
On the instability of pipe Poiseuille flow
,”
Phys. Fluids
8
,
2923
(
1996
).
26.
D.
Biau
,
H.
Soueid
, and
A.
Bottaro
, “
Transition to turbulence in duct flow
,”
J. Fluid Mech.
596
,
133
(
2008
).
27.
H. M.
Blackburn
,
D.
Barkley
, and
S. J.
Sherwin
, “
Convective instability and transient growth in flow over a backward-facing step
,”
J. Fluid Mech.
603
,
271
(
2008
).
28.
H. M.
Blackburn
,
S. J.
Sherwin
, and
D.
Barkley
, “
Convective instability and transient growth in steady and pulsatile stenotic flows
,”
J. Fluid Mech.
607
,
267
(
2008
).
29.
C. D.
Cantwell
,
D.
Barkley
, and
H. M.
Blackburn
, “
Transient growth analysis of flow through a sudden expansion in a circular pipe
,”
Phys. Fluids
22
,
1
(
2010
).
30.
M. D.
Griffith
,
M. C.
Thompson
,
T.
Leweke
, and
K.
Hourigan
, “
Convective instability in steady stenotic flow: optimal transient growth and experimental observation
,”
J. Fluid Mech.
655
,
504
(
2010
).
31.
J. M.
Chomaz
, “
Global instabilities in spatially developing flows: Non-normality and nonlinearity
,”
Annu. Rev. Fluid Mech.
37
,
357
(
2005
).
32.
F.
Giannetti
and
P.
Luchini
, “
Structural sensitivity of the first instability of the cylinder wake
,”
J. Fluid Mech.
581
,
167
(
2007
).
33.
O.
Marquet
,
D.
Sipp
, and
L.
Jacquin
, “
Sensitivity analysis and passive control of cylinder flow
,”
J. Fluid Mech.
615
,
221
(
2008
).
34.
C. D.
Cantwell
and
D.
Barkley
, “
Computational study of subcritical response in flow past a circular cylinder
,”
Phys. Rev. E
82
,
026315
(
2010
).
35.
N.
Abdessemed
,
A. S.
Sharma
,
S. J.
Sherwin
, and
V.
Theofilis
, “
Transient growth analysis of the flow past a circular cylinder
,”
Phys. Fluids
21
,
044103
(
2009
).
36.
C.
Marais
,
R.
Godoy-Diana
,
D.
Barkley
, and
J.
Wesfreid
, “
Convective instability in inhomogeneous media impulse response in the subcritical cylinder wake
,”
Phys. Fluids
23
,
014104
(
2011
).
37.
D.
Gerard-Varet
, “
Amplification of small perturbations in a Hartmann layer
,”
Phys. Fluids
14
,
1458
(
2002
).
38.
C.
Airiau
and
M.
Castets
, “
On the amplification of small disturbances in a channel flow with a normal magnetic field
,”
Phys. Fluids
16
,
2991
(
2004
).
39.
D. S.
Krasnov
,
E.
Zienicke
,
O.
Zikanov
,
T.
Boeck
, and
A.
Thess
, “
Numerical study of the instability of the Hartmann layer
,”
J. Fluid Mech.
504
,
183
(
2004
).
40.
T.
Boeck
,
D.
Krasnov
,
M.
Rossi
, and
O.
Zikanov
, “
Transient growth in MHD duct flow
,” in
Advances in Turbulence XXII: Proceedings of the 12th EUROMECH European Turbulence Conference, September 7–10, 2009, Marburg, Germany
,
Springer Proceedings Physics
Vol.
132
, edited by
B.
Eckhardt
(
Springer
,
Berlin
,
2009
), pp.
829
832
.
41.
D.
Krasnov
,
O.
Zikanov
,
M.
Rossi
, and
T.
Boeck
, “
Optimal linear growth in magnetohydrodynamic duct flow
,”
J. Fluid Mech.
653
,
273
(
2010
).
42.
D.
Barkley
,
H. M.
Blackburn
, and
S. J.
Sherwin
, “
Direct optimal growth analysis for timesteppers
,”
Int. J. Numer. Methods Fluids
57
,
1435
(
2008
).
43.
G. J.
Sheard
,
M. J.
Fitzgerald
, and
K.
Ryan
, “
Cylinders with square cross-section: Wake instabilities with incidence angle variation
,”
J. Fluid Mech.
630
,
43
(
2009
).
44.
H. M.
Blackburn
and
G. J.
Sheard
, “
On quasi-periodic and subharmonic Floquet wake instabilities
,”
Phys. Fluids
22
,
031701
(
2010
).
45.
G. J.
Sheard
,
T.
Leweke
,
M. C.
Thompson
, and
K.
Hourigan
, “
Flow around an impulsively arrested circular cylinder
,”
Phys. Fluids
19
,
083601
(
2007
).
46.
G. J.
Sheard
and
M. P.
King
, “
Horizontal convection: Effect of aspect ratio on Rayleigh-number scaling and stability
,”
Appl. Math. Model.
35
,
1647
(
2011
).
47.
R. J.
Moreau
,
Magnetohydrodynamics
(
Kluwer
,
Dordrecht, Boston
,
1990
).
48.
G. E.
Karniadakis
,
M.
Israeli
, and
S. A.
Orszag
, “
High-order splitting methods for the incompressible Navier–Stokes equations
,”
J. Comput. Phys.
97
,
414
(
1991
).
49.
G. J.
Sheard
, “
Wake stability features behind a square cylinder: Focus on small incidence angles
,”
J. Fluids Struct.
27
,
734
(
2011
).
50.
D. C.
Hill
, “
A theoretical approach for analyzing the restabilization of wakes
,” in
30th AIAA Aerospace Science Meeting and Exhibit
(
National Aeronautics and Space Administration, Ames Research Center/National Technical Information Service
,
Moffett Field, CA, USA/Reno, NV, USA
,
1992
), AIAA Paper No. 92-0067.
51.
N.
Abdessemed
,
S. J.
Sherwin
, and
V.
Theofilis
, “
Linear instability analysis of low-pressure turbine flows
,”
J. Fluid Mech.
628
,
57
(
2009
).
52.
G. J.
Sheard
, “
Flow dynamics and wall shear-stress variation in a fusiform aneurysm
,”
J. Eng. Math.
64
,
379
(
2009
).
53.
A.
Neild
,
T. W.
Ng
,
G. J.
Sheard
,
M.
Powers
, and
S.
Oberti
, “
Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations
,”
Sens. Actuators B
150
,
811
(
2010
).
54.
G.
Coppola
,
S. J.
Sherwin
, and
J.
Peiró
, “
Nonlinear particle tracking for high-order elements
,”
J. Comput. Phys.
172
,
356
(
2001
).
You do not currently have access to this content.