The dynamics of head-on collision of unequal-size droplets were experimentally and theoretically investigated, with emphasis on identifying distinct collision outcomes and interpreting the size-ratio dependence. A unified regime diagram in terms of bouncing, permanent coalescence, and separation after coalescence was identified for hydrocarbon and water droplets in the parameter space of the size ratio and a collision Weber number. Experimental results show that the transition Weber number, Web-c, that separates the bouncing and permanent coalescence regimes, weakly depends on the size ratio, while the transition Weber number, Wec-s, that separates permanent coalescence and separation regimes, significantly increases with the size ratio. A theoretical model based on energy balance and scaling analysis was developed to explain the size-ratio dependence of Wec-s. The theoretical results show good agreement with the experimental data for tetradecane and decane droplets, with a moderate discrepancy for water droplets.

1.
R.
Gunn
, “
Collision characteristics of freely falling water drops
,”
Science
150
,
695
(
1965
).
2.
P. R.
Brazier-Smith
,
S. G.
Jennings
, and
J.
Latham
, “
The interaction of falling water drops: Coalescence
,”
Proc. R. Soc. London, Ser. A
326
,
393
(
1972
).
3.
F.
Raes
and
R.
Van Dingenen
, “
Simulations of sondensation and cloud condensation nuclei from biogenic So2 in the remote marine boundary-layer
,”
J. Geophys. Res.
97
,
12901
, doi: (
1992
).
4.
F.
Raes
,
R. Van
Dingenen
,
E.
Vignati
,
J.
Wilson
,
J.-P.
Putaud
,
J. H.
Seinfeld
, and
P.
Adams
, “
Formation and cycling of aerosols in the global troposphere
,”
Atmos. Environ.
34
,
4215
(
2000
).
5.
H.
Hiroyasu
and
T.
Kadota
,
Fuel Droplet Size Distribution in Diesel Combustion Chamber
, SAE, No. 740715,
1974
.
6.
G. M.
Faeth
, “
Current Status of Droplet and Liquid Combustion
,”
Prog. Energy Combust. Sci.
3
,
191
(
1977
).
7.
J. R.
Adam
,
N. R.
Lindblad
, and
C. D.
Hendrick
, “
Collision coalescence and disruption of water droplets
,”
J. Appl. Phys.
39
,
5173
(
1968
).
8.
R. H.
Magarvey
and
J. W.
Geldart
, “
Drop collisions under conditions of free fall
,”
J. Atmos. Sci.
19
,
107
(
1962
).
9.
C. E.
Abbott
, “
Survey of waterdrop interaction experiments
,”
Rev. Geophys.
15
,
363
, doi: (
1977
).
10.
Y. J.
Jiang
,
A.
Umemura
, and
C. K.
Law
, “
An experimental investigation on the collision behavior of hydrocarbon droplets
,”
J. Fluid Mech.
234
,
171
(
1992
).
11.
J.
Qian
and
C. K.
Law
, “
Regimes of coalescence and separation in droplet collision
,”
J. Fluid Mech.
331
,
59
(
1997
).
12.
N.
Ashgriz
and
J. Y.
Poo
, “
Coalescence and separation in binary collisions of liquid-drops
,”
J. Fluid Mech.
221
,
183
(
1990
).
13.
C.
Rabe
,
J.
Malet
, and
F.
Feuillebois
, “
Experimental investigation of water droplet binary collisions and description of outcomes with a symmetric Weber number
,”
Phys. Fluids
22
,
047101
(
2010
).
14.
M. R.
Nobari
,
Y. J.
Jan
, and
G.
Tryggvason
, “
Head-on collision of drops - A numerical investigation
,”
Phys. Fluids
8
,
29
(
1996
).
You do not currently have access to this content.