We report on the theory of logarithmic temperature profiles in very strongly developed thermal convection in the geometry of a Rayleigh-Bénard cell with aspect ratio (defined by cell width divided by cell height) Γ = 1, and discuss the degree of agreement with the recently measured profiles in the ultimate state of very large Rayleigh number flow. The parameters of the log-profile are calculated and compared with the measured ones. Their physical interpretation as well as their dependence on the radial position are discussed.

1.
S.
Grossmann
and
D.
Lohse
, “
Multiple scaling in the ultimate range of thermal convection
,”
Phys. Fluids
23
,
045108
(
2011
).
2.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
,”
Rev. Mod. Phys.
81
,
503
(
2009
).
3.
D.
Lohse
and
K.-Q.
Xia
, “
Small-scale properties of turbulent Rayleigh-Bénard convection
,”
Annu. Rev. Fluid Mech.
42
,
335
(
2010
).
4.
D.
Funfschilling
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Search for the ultimate state in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
103
,
014503
(
2009
).
5.
G.
Ahlers
,
D.
Funfschilling
, and
E.
Bodenschatz
, “
Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015
,”
New J. Phys.
11
,
123001
(
2009
).
6.
G.
Ahlers
,
D.
Funfschilling
, and
E.
Bodenschatz
, “
Addendum to transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015
,”
New J. Phys.
13
,
049401
(
2011
).
7.
X.
He
,
D.
Funfschilling
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Heat transport by turbulent Rayleigh-Bénard convection for Pr ≃ 0.8 and 4 × 1011 ≲ Ra ≲ 2 × 1014: Ultimate-state transition for aspect ratio Γ = 1.00
,”
New J. Phys.
14
,
063030
(
2012
).
8.
G.
Ahlers
,
X.
He
,
D.
Funfschilling
, and
E.
Bodenschatz
, “
Heat transport by turbulent Rayleigh-Bénard convection for Pr ≃ 0.8 and 3 × 1012 ≲ Ra ≲ 1015: Aspect ratio Γ = 0.50
,”
New J. Phys.
14
,
103012
(
2012
).
9.
G.
Ahlers
,
E.
Bodenschatz
,
D.
Funfschilling
,
S.
Grossmann
,
X.-Z.
He
,
D.
Lohse
,
R. J. A. M.
Stevens
, and
R.
Verzicco
, “
Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
108
,
114501
(
2012
).
10.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon
,
Oxford
,
1987
).
11.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
2000
).
12.
X.-Z.
He
,
D.
Funfschilling
,
H.
Nobach
,
E.
Bodenschatz
, and
G.
Ahlers
, “
Transition to the ultimate state of turbulent Rayleigh-Bénard convection
,”
Phys. Rev. Lett.
108
,
024502
(
2012
).
13.
S.
Grossmann
and
D.
Lohse
, “
Scaling in thermal convection: A unifying view
,”
J. Fluid. Mech.
407
,
27
(
2000
);
S.
Grossmann
and
D.
Lohse
, “
Thermal convection for large Prandtl number
,”
Phys. Rev. Lett.
86
,
3316
(
2001
);
[PubMed]
S.
Grossmann
and
D.
Lohse
, “
Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection
,”
Phys. Rev. E
66
,
016305
(
2002
);
S.
Grossmann
and
D.
Lohse
, “
Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes
,”
Phys. Fluids
16
,
4462
(
2004
).
You do not currently have access to this content.