A reassessment of historical drag coefficient data for spherical particles accelerated in shock-induced flows has motivated new shock tube experiments of particle response to the passage of a normal shock wave. Particle drag coefficients were measured by tracking the trajectories of 1-mm spheres in the flow induced by incident shocks at Mach numbers 1.68, 1.93, and 2.04. The necessary data accuracy is obtained by accounting for the shock tube wall boundary layer growth and avoiding interactions between multiple particles. Similar to past experiments, the current data clearly show that as the Mach number increases, the drag coefficient increases substantially. This increase significantly exceeds the drag predicted by incompressible standard drag models, but a recently developed compressible drag correlation returns values quite close to the current measurements. Recent theoretical work and low particle accelerations indicate that unsteadiness should not be expected to contribute to the drag increase over the relatively long time scales of the experiments. These observations suggest that elevated particle drag coefficients are a quasi-steady phenomenon attributed to increased compressibility rather than true flow unsteadiness.

1.
O.
Igra
and
G.
Ben-Dor
, “
Dusty shock waves
,”
Appl. Mech. Rev.
41
(
11
),
379
437
(
1988
).
2.
O.
Igra
and
K.
Takayama
, “
Shock tube study of the drag coefficient of a sphere in a non-stationary flow
,”
Proc. R. Soc. London, Ser. A
442
,
231
247
(
1993
).
3.
S. F.
Hoerner
,
Fluid-Dynamic Drag
(
Sighard F. Hoerner
,
Brick Town, NJ
,
1965
).
4.
C. B.
Henderson
, “
Drag coefficients of spheres in continuum and rarefied flows
,”
AIAA J.
14
(
6
),
707
708
(
1976
).
5.
R.
Clift
,
J. R.
Grace
, and
M. E.
Weber
,
Bubbles, Drops, and Particles
(
Academic
,
New York, NY
,
1978
).
6.
R.
Clift
and
W. H.
Gauvin
, in
Proceedings of CHEMECA ‘70
(
Butterworth
,
Melbourne
,
1970
), Vol.
1
, pp.
14
28
.
7.
E.
Loth
, “
Compressibility and rarefaction effects on drag of a spherical particle
,”
AIAA J.
46
(
9
),
2219
2228
(
2008
).
8.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
Improved drag correlation for spheres and application to shock-tube experiments
,”
AIAA J.
48
(
6
),
1273
1276
(
2010
).
9.
H.
Tanno
,
K.
Itoh
,
T.
Saito
,
A.
Abe
, and
K.
Takayama
, “
Interaction of a shock with a sphere suspended in a vertical shock tube
,”
Shock Waves
13
(
3
),
191
200
(
2003
).
10.
M.
Sun
,
T.
Saito
,
K.
Takayama
, and
H.
Tanno
, “
Unsteady drag on a sphere by shock wave loading
,”
Shock Waves
14
(
1-2
),
3
9
(
2004
).
11.
B. W.
Skews
,
M. S.
Bredin
, and
M.
Efune
, “
Drag measurement in unsteady compressible flow. Part 2: Shock wave loading of spheres and cones
,”
S. Afr. Inst. Mech. Eng. R&D J.
23
(
1
),
13
19
(
2007
).
12.
M.
Parmar
,
A.
Haselbacher
, and
S.
Balachandar
, “
Modeling of the unsteady force in shock-particle interaction
,”
Shock Waves
19
(
4
),
317
329
(
2009
).
13.
G.
Rodriguez
,
P.
Gandeboeuf
,
M.
Khelifi
, and
J. F.
Haas
, “
Drag coefficient measurement of spheres in a vertical shock tube and numerical simulation
,” in
Proceedings of the 19th International Symposium on Shock Waves
, edited by
R.
Brun
and
L.
Dumitrescu
(
Springer-Verlag
,
1995
), pp.
43
48
.
14.
C.
Devals
,
G.
Jourdan
,
J. L.
Estivalezes
,
E. E.
Meshkov
, and
L.
Houas
, “
Shock tube spherical particle accelerating study for drag coefficient determination
,”
Shock Waves
12
,
325
331
(
2003
).
15.
T.
Suzuki
,
Y.
Sakamura
,
O.
Igra
,
T.
Adachi
,
S.
Kobayashi
,
A.
Kotani
, and
Y.
Funawatashi
, “
Shock tube study of particles’ motion behind a planar shock wave
,”
Meas. Sci. Technol.
16
,
2431
2436
(
2005
).
16.
G.
Jourdan
,
L.
Houas
,
O.
Igra
,
J. L.
Estivalezes
,
C.
Devals
, and
E. E.
Meshkov
, “
Drag coefficient of a sphere in a non-stationary flow: New results
,”
Proc. R. Soc. London, Ser. A
463
,
3323
3345
(
2007
).
17.
C. T.
Crowe
,
J. A.
Nicholls
, and
R. B.
Morrison
, “
Drag coefficients of inert and burning particles accelerating in gas streams
,” in
Proceedings of the 9th Symposium (International) on Combustion
(
Academic
,
New York
,
1963
), pp.
395
406
.
18.
B. P.
Selberg
and
J. A.
Nicholls
, “
Drag coefficient of small spherical particles
,”
AIAA J.
6
(
3
),
401
408
(
1968
).
19.
G.
Rudinger
, “
Effective drag coefficient for gas-particle flow in shock tubes
,”
ASME J. Basic Eng.
92
,
165
172
(
1970
).
20.
S. K.
Karanfilian
and
T. J.
Kotas
, “
Drag on a sphere in unsteady motion in a liquid at rest
,”
J. Fluid Mech.
87
(
Part 1
),
85
96
(
1978
).
21.
J. L.
Wagner
,
S. J.
Beresh
,
S. P.
Kearney
,
B. O.
Pruett
, and
E.
Wright
, “
Shock tube investigation of unsteady drag in shock-particle interactions
,” AIAA Paper 2011-3910.
22.
J. L.
Wagner
,
S. J.
Beresh
,
S. P.
Kearney
,
W. M.
Trott
,
J. N.
Castaneda
,
B. O.
Pruett
, and
M. R.
Baer
, “
A multiphase shock tube for shock wave interactions with dense particle fields
,”
Exp. Fluids
52
(
6
),
1507
1517
(
2012
).
23.
H.
Mirels
, “
Shock tube test time limitation due to turbulent-wall boundary layer
,”
AIAA J.
2
(
1
),
84
93
(
1964
).
24.
H.
Mirels
, “
Flow nonuniformity in shock tubes operating at maximum test times
,”
Phys. Fluids
9
(
10
),
1907
1912
(
1966
).
25.
H.
Mirels
, “
Attenuation in a shock tube due to unsteady-boundary-layer action
,” National Advisory Committee for Aeronautics Report, 1333,
1957
.
26.
R. L.
Trimpi
and
N. B.
Cohen
, “
A theory for predicting the flow of real gases in shock tubes with experimental verification
,” National Advisory Committee for Aeronautics Technical Note, NACA TN-3375,
1955
.
27.
H.
Mirels
and
W. H.
Braun
, “
Nonuniformities in shock-tube flow due to unsteady-boundary layer action
,” National Advisory Committee for Aeronautics Technical Note, NACA TN-4021,
1957
.
You do not currently have access to this content.