We study density-stable laminar miscible displacement flow of two iso-viscous Newtonian fluids in an inclined pipe (diameter

$\hat{D}$
D̂⁠). We present a wide range of novel experimental results. We illustrate the non-monotone relation in displacement efficiency at the density difference moves from positive (density unstable) to negative (density stable), the efficiency being minimal for iso-dense fluids. The density stable configuration has been found to produce highly efficient displacements, with the bulk of the interface moving steadily at the mean velocity. The streamwise length of the stretched interface, or stretch length
$\hat{L}$
L̂
, is measured over a wide range of parameters. The stretch length increases with the mean flow velocity, increases with inclination β from vertical, decreases with density difference, and increases with viscosity. Our data are well represented by the scaled expression L − tan β = −3680/χ, where χ is the ratio of buoyancy and viscous stresses.

1.
G. I.
Taylor
, “
Dispersion of soluble matter in a solvent flowing slowly through a tube
,”
Proc. R. Soc. London, Ser. A
219
,
186
(
1953
).
2.
R.
Aris
, “
On the dispersion of a solute in a fluid flowing through a tube
,”
Proc. R. Soc. London, Ser. A
235
,
67
(
1956
).
3.
P.
Petitjeans
and
T.
Maxworthy
, “
Miscible displacements in capillary tubes. Part 1. Experiments
,”
J. Fluid Mech.
326
,
37
(
1996
).
4.
J.
Scoffoni
,
E.
Lajeunesse
, and
G. M.
Homsy
, “
Interface instabilities during displacements of two miscible fluids in a vertical pipe
,”
Phys. Fluids
13
,
553
(
2001
).
5.
J.
Kuang
,
T.
Maxworthy
, and
P.
Petitjeans
, “
Miscible displacements between silicone oils in capillary tubes
,”
Eur. J. Mech. B/Fluids
22
,
271
(
2003
).
6.
R.
Balasubramaniam
,
N.
Rashidnia
,
T.
Maxworthy
, and
J.
Kuang
, “
Instability of miscible interfaces in a cylindrical tube
,”
Phys. Fluids
17
,
052103
(
2005
).
7.
E.
Lajeunesse
,
J.
Martin
,
N.
Rakotomalala
,
D.
Salin
, and
Y. C.
Yortsos
, “
Miscible displacement in a Hele-Shaw cell at high rates
,”
J. Fluid Mech.
398
,
299
(
1999
).
8.
J.
Fernandez
,
P.
Kurowski
,
P.
Petitjeans
, and
E.
Meiburg
, “
Density-driven unstable flows of miscible fluids in a Hele-Shaw cell
,”
J. Fluid Mech.
451
,
239
(
2002
).
9.
C.
Jiao
and
T.
Maxworthy
, “
An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell
,”
Exp. Fluids
44
,
781
(
2008
).
10.
C.-Y.
Chen
and
E.
Meiburg
, “
Miscible displacements in capillary tubes. Part 2. numerical simulations
,”
J. Fluid Mech.
326
,
57
(
1996
).
11.
N.
Rakotomalala
,
D.
Salin
, and
P.
Watzky
, “
Miscible displacement between two parallel plates: BGK lattice gas simulations
,”
J. Fluid Mech.
338
,
277
(
1997
).
12.
K. C.
Sahu
,
H.
Ding
,
P.
Valluri
, and
O. K.
Matar
, “
Pressure-driven miscible two-fluid channel flow with density gradients
,”
Phys. Fluids
21
,
043603
(
2009
).
13.
S. M.
Taghavi
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Stationary residual layers in buoyant Newtonian displacement flows
,”
Phys. Fluids
23
,
044105
(
2011
).
14.
S. M.
Taghavi
,
K.
Alba
,
T.
Seon
,
K.
Wielage-Burchard
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Miscible displacement flows in near-horizontal ducts at low Atwood number
,”
J. Fluid Mech.
696
,
175
(
2012
).
15.
R. M.
Oliveira
and
E.
Meiburg
, “
Miscible displacements in Hele-Shaw cells: Three-dimensional Navier-Stokes simulations
,”
J. Fluid Mech.
687
,
431
(
2011
).
16.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Influence of an imposed flow on the stability of a gravity current in a near horizontal duct
,”
Phys. Fluids
22
,
031702
(
2010
).
17.
S. M.
Taghavi
,
T.
Seon
,
D. M.
Martinez
, and
I. A.
Frigaard
, “
Buoyancy-dominated displacement flows in near-horizontal channels: the viscous limit
,”
J. Fluid Mech.
639
,
1
(
2009
).
You do not currently have access to this content.