Leidenfrost ratchets are structures with the ability of transporting liquid droplets when heated over the critical Leidenfrost temperature. Once this temperature is reached, the droplet levitates over the surface and moves in the direction marked by the slope of the ratchet at terminal velocities around 10 cm/s. Here we provide new experiments with micron-sized ratchets, which have been produced with picosecond pulse laser ablation. In the following work, we use a simple method to measure the thrust driving droplets of capillary size over the micro-ratchets. The mechanism responsible for the force acting on the drop on superheated ratchets has been recently under debate. We extend the recently proposed “viscous mechanism” proposed by Dupeux et al. [Europhys. Lett.96, 58001 (2011) https://doi.org/10.1209/0295-5075/96/58001] to capillary droplets and find good agreement with our measurements.

1.
M.
Prakash
,
D.
Quéré
, and
J. W. M.
Bush
, “
Surface tension transport of prey by feeding shorebirds: the capillary ratchet
,”
Science
320
(
5878
),
931
(
2008
).
2.
D.
Reguera
,
A.
Luque
,
P. S.
Burada
,
G.
Schmid
,
J. M.
Rubı
, and
P.
Hänggi
, “
Entropic splitter for particle separation
,”
Phys. Rev. Lett.
108
(
2
),
020604
(
2012
).
3.
D.
Van Der Meer
,
P.
Reimann
,
K.
Van Der Weele
, and
D.
Lohse
, “
Spontaneous ratchet effect in a granular gas
,”
Phys. Rev. Lett.
92
(
18
),
184301
(
2004
).
4.
P.
Eshuis
,
K.
van der Weele
,
D.
Lohse
, and
D.
van der Meer
, “
Experimental realization of a rotational ratchet in a granular gas
,”
Phys. Rev. Lett.
104
(
24
),
248001
(
2010
).
5.
S.
Joubaud
,
D.
Lohse
, and
D.
van der Meer
, “
Fluctuation theorems for an asymmetric rotor in a granular gas
,”
Phys. Rev. Lett.
108
,
210604
(
2012
).
6.
H.
Linke
,
B.
Alemán
,
L.
Melling
,
M.
Taormina
,
M.
Francis
,
C.
Dow-Hygelund
,
V.
Narayanan
,
R.
Taylor
, and
A.
Stout
, “
Self-propelled Leidenfrost droplets
,”
Phys. Rev. Lett.
96
(
15
),
154502
(
2006
).
7.
A. L.
Biance
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost drops
,”
Phys. Fluids
15
(
6
),
1632
(
2003
).
8.
G.
Lagubeau
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
, “
Leidenfrost on a ratchet
,”
Nat. Phys.
7
(
5
),
395
398
(
2011
).
9.
G.
Dupeux
,
M.
Le Merrer
,
G.
Lagubeau
,
C.
Clanet
,
S.
Hardt
, and
D.
Quéré
, “
Viscous mechanism for Leidenfrost propulsion on a ratchet
,”
Europhys. Lett.
96
,
58001
(
2011
).
10.
G.
Dupeux
,
M.
Le Merrer
,
C.
Clanet
, and
D.
Quéré
, “
Trapping Leidenfrost drops with crenelations
,”
Phys. Rev. Lett.
107
(
11
),
114503
(
2011
).
11.
T. R.
Cousins
,
R. E.
Goldstein
,
J. W.
Jaworski
, and
A. I.
Pesci
, “
A ratchet trap for Leidenfrost drops
,”
J. Fluid Mech.
696
,
215
227
(
2012
).
12.
K.
Piroird
,
C.
Clanet
, and
D.
Quéré
, “
Magnetic control of Leidenfrost drops
,”
Phys. Rev. E
85
(
5
),
056311
(
2012
).
13.
D.
Arnaldo del Cerro
,
G.
Römer
, and
A. J.
Huis In't Veld
, “
Erosion resistant anti-ice surfaces generated by ultra short laser pulses
,”
Phys. Procedia
5
,
231
235
(
2010
).
14.
J.
Meijer
,
K.
Du
,
A.
Gillner
,
D.
Hoffmann
,
V. S.
Kovalenko
,
T.
Masuzawa
,
A.
Ostendorf
,
R.
Poprawe
, and
W.
Schulz
, “
Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons
,”
CIRP Ann. Manuf. Technol.
51
(
2
),
531
550
(
2002
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4768813 for the following videos: videos #1 and #2 show, respectively, a heavy non-capillary droplet and a capillary one on a microratchet (Figure 3). Videos #3, #4, and #5 show three capillary droplets in three micro-ratchets with different aspect ratios, corresponding to the micro-ratchets A, B, and C in Figures 2 and 5. In video #6, a capillary droplet successfully climbs a tilted micro-ratchet, however the drop falls back again when it reaches the end of the ratchet-patterned area.
16.
J. T.
Ok
,
E.
Lopez-Oña
,
D. E.
Nikitopoulos
,
H.
Wong
, and
S.
Park
, “
Propulsion of droplets on micro- and sub-micron ratchet surfaces in the Leidenfrost temperature regime
,”
Microfluid. Nanofluid.
10
(
5
),
1045
1054
(
2010
).
17.
A.
Würger
, “
Leidenfrost gas ratchets driven by thermal creep
,”
Phys. Rev. Lett.
107
(
16
),
164502
(
2011
).
18.
S.
Hardt
,
S.
Tiwari
, and
T.
Baier
, “
Thermally-driven flows between a Leidenfrost solid and a ratchet surface
,” preprint arXiv:1208.5657 (
2012
).
19.
J. H.
Snoeijer
,
P.
Brunet
, and
J.
Eggers
, “
Maximum size of drops levitated by an air cushion
,”
Phys. Rev. E
79
(
3
),
036307
(
2009
).
20.
J. C.
Burton
,
A. L.
Sharpe
,
R. C. A.
van der Veen
,
A.
Franco
, and
S. R.
Nagel
, “
The geometry of the vapor layer under a Leidenfrost drop
,”
Phys. Rev. Lett.
109
(
7
),
074301
(
2012
).
21.
T.
Baier
,
G.
Dupeux
,
S.
Herbert
,
S.
Hardt
, and
D.
Quere
, “
Propulsion mechanisms for leidenfrost solids on ratchet surfaces
,” preprint arXiv:1208.5721 (
2012
).
22.
D.
Arnaldo del Cerro
,
A. G.
Marin
,
G.
Römer
,
B.
Pathiraj
,
D.
Lohse
, and
A.
Huis
in 't Veld, “
Leidenfrost point reduction in micro-patterned metallic surfaces
,”
Langmuir
28
(
42
),
15106
(
2012
).

Supplementary Material

You do not currently have access to this content.