This paper addresses post detonation modelling in spherical explosions. One of the challenges is thus related to compressible turbulent mixing layers modelling. A one-dimensional flow model is derived consisting in a reduced two-phase compressible flow model with velocity drift. To reduce the number of model parameters, the stiff velocity relaxation limit is considered. A semi-discrete analysis is used resulting in a specific artificial viscosity formulation embedded in the diffuse interface model of Kapila et al. [Phys. Fluids13(10), 30023024 (2001)] https://doi.org/10.1063/1.1398042. Thanks to the velocity non-equilibrium model and semi discrete formulation, the model fulfils the second law of thermodynamics in the global sense and uses a single parameter. Multidimensional mixing layer effects occurring at gas-gas unstable interfaces are thus summarized as artificial viscosity effects. Model's predictions are compared against experimental measurements of mixing layer growth in shock tubes at moderate initial pressure ratios as well as fireball radius evolutions in air explosions at high initial pressure ratios. Also, pressure signals recorded at various stations are compared, showing excellent agreement for the leading shock wave as well as the secondary one. With the help of various experiments in the low and high initial pressure ratios bounds, estimates for the interpenetration parameter are given.

1.
J.
Massoni
,
R.
Saurel
,
A.
Lefrançois
, and
G.
Baudin
, “
Modeling spherical explosions with aluminized energetic materials
,”
Shock Waves
16
(
1
),
75
92
(
2006
).
2.
R.
Liska
and
B.
Wendroff
, “
Comparison of several difference schemes on 1D and 2D test problems for the Euler equations
,”
SIAM J. Sci. Comput. (USA)
25
(
3
),
995
1017
(
2004
).
3.
S.
Gauthier
and
M.
Bonnet
, “
A k-ɛ model for turbulent mixing in shock tube flows induced by Rayleigh-Taylor instability
,”
Phys. Fluids A
2
,
1685
1694
(
1990
).
4.
D.
Besnard
,
F.
Harlow
,
R.
Rauenzahn
, and
C.
Zemach
, “
Turbulent transport equations for variable-density turbulence and their relationship to two-fields models
,” LANL Report, LA-12303-MS,
1992
.
5.
B.
Cheng
, “
Review of turbulent mixing models
,”
Acta Math. Sci.
29B
(
6
),
1703
1720
(
2009
).
6.
D. L.
Youngs
, “
Modeling turbulent mixing by Rayleigh-Taylor instability
,”
Physica D
37
,
270
287
(
1989
).
7.
Y.
Chen
,
J.
Glimm
,
D. H.
Sharp
, and
Q.
Zhang
, “
A two-phase flow model of the Rayleigh-Taylor mixing zone
,”
Phys. Fluids
8
,
816
825
(
1996
).
8.
J.
Glimm
,
D.
Saltz
, and
D. H.
Sharp
, “
Two-phase modelling of a fluid mixing layer
,”
J. Fluid Mech.
378
,
119
143
(
1999
).
9.
A. J.
Scannapieco
and
B.
Cheng
, “
A multifluid interpenetration mix model
,”
Phys. Lett.
299
,
49
64
(
2002
).
10.
R.
Saurel
,
S.
Gavrilyuk
, and
F.
Renaud
, “
A multiphase model with internal degree of freedom: Application to shock-bubble interaction
,”
J. Fluid Mech.
495
,
283
321
(
2003
).
11.
M. R.
Baer
and
J. W.
Nunziato
, “
A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials
,”
Int. J. Multiphase Flow
12
(
6
),
861
(
1986
).
12.
R.
Abgrall
and
R.
Saurel
, “
Discrete equations for physical and numerical compressible multiphase mixtures
,”
J. Comput. Phys.
186
(
2
),
361
396
(
2003
).
13.
M.
Olazabal
, “
Modélisation numérique de problèmes de stabilité linéarisée. Application aux équations de la dynamique des gaz et de la MHD idéale
,” Ph.D. dissertation,
University Paris 6
,
1998
.
14.
E.
Godlewski
,
M.
Olazabal
, and
P. A.
Raviart
, “
On the linearization of hyperbolic systems of conservation laws. Application to stability
,” Equations aux Dérivées Partielles et Applications, Gauthier-Villars (
1998
), pp.
549
570
.
15.
E.
Godlewski
and
P. A.
Raviart
, “
The linearized stability of solutions of nonlinear hyperbolic systems of conservation laws. A general numerical approach
,”
Math. Comput. Simul.
50
,
77
95
(
1999
).
16.
E.
Godlewski
,
M.
Olazabal
, and
P. A.
Raviart
, “
A Godunov type method for studying the linearised stability of a flow
,”
Application to the Richtmyer-Meshkov Instability. In Godunov Methods, Theory and Applications
, edited by
E. F.
Toro
(
Kluwer
,
2001
), pp.
377
397
.
17.
R.
Samtaney
, “
A method to simulate linear stability of impulsively accelerated density interfaces in ideal-MHD and gas dynamics
,”
J. Comput. Phys.
228
(
1
),
6773
6783
(
2009
).
18.
R.
Saurel
and
R.
Abgrall
, “
A multiphase Godunov method for compressible multifluid and multiphase flows
,”
J. Comput. Phys.
150
,
425
467
(
1999
).
19.
A. K.
Kapila
,
R.
Menikoff
,
J. B.
Bdzil
,
S. F.
Son
, and
D. S.
Stewart
, “
Two-phase modeling of deflagration to detonation transition in granular materials: Reduced equations
,”
Phys. Fluids
13
(
10
),
3002
3024
(
2001
).
20.
H.
Guillard
and
F.
Duval
, “
A Darcy law for the drift velocity in a two-phase flow model
,”
J. Comput. Phys.
224
,
288
313
(
2007
).
21.
R.
Saurel
,
N.
Favrie
,
F.
Petitpas
,
M. H.
Lallemand
, and
S.
Gavrilyuk
, “
Modelling irreversible dynamic compaction of powders
,”
J. Fluid Mech.
664
,
348
396
(
2010
).
22.
J.
von Neumann
and
R. D.
Richtmyer
, “
A method for the numerical calculation of hydrodynamic shocks
,”
J. Appl. Phys.
21
(
3
),
232
237
(
1950
).
23.
P. D.
Lax
and
B.
Wendroff
, “
On the stability of difference schemes
,”
Commun. Pure Appl. Math.
15
(
4
),
363
371
(
1962
).
24.
R. W.
MacCormack
, “
The effect of viscosity in hypervelocity impact cratering
,” AIAA Paper No. 69–354,
1969
.
25.
R.
Saurel
,
F.
Petitpas
, and
R. A.
Berry
, “
Simple and efficient relaxation for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures
,”
J. Comput. Phys.
228
,
1678
1712
(
2009
).
26.
M. J.
Kamlet
and
S. J.
Jacobs
, “
Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives
,”
J. Chem. Phys.
48
,
23
(
1968
).
27.
R.
Saurel
,
F.
Petitpas
, and
R.
Abgrall
, “
Modeling phase transition in metastable liquids. Application to flashing and cavitating flows
,”
J. Fluid Mech.
607
,
313
350
(
2008
).
28.
E.
Lee
,
H.
Horning
, and
J.
Kury
, “
Adiabatic expansion of high explosives detonation products
,” Lawrence Radiation Laboratory, University of California, Livermore, TID 4500 – UCRL 50422 (
1968
).
29.
A. B.
Wood
,
A Textbook of Sound
(
Bell
,
1930
).
30.
G.
Huber
, “
Modélisation des effets d'interpénétration entre fluides au travers d'une interface instable
,” Ph.D. dissertation,
Aix Marseille University
,
2012
.
31.
A.
Ambroso
,
C.
Chalons
,
F.
Coquel
,
T.
Galié
,
E.
Godlewski
,
P. A.
Raviart
, and
N.
Seguin
, “
The drift-flux asymptotic limit of barotropic two-phase two-pressure models
,”
Commun. Math. Sci.
6
(
2
),
521
529
(
2008
).
32.
X.
Liu
,
E.
George
,
W.
Bo
, and
J.
Glimm
, “
Turbulent mixing with physical mass diffusion
,”
Phys. Rev. E
73
,
056301
(
2006
).
33.
L.
Houas
,
G.
Jourdan
,
L.
Schwaederlé
,
R.
Carrey
, and
F.
Diaz
, “
A new large cross section shock tube for interface hydrodynamic instability induced turbulent mixing study
,”
Shock Waves
12
,
431
(
2003
).
34.
C.
Mariani
,
M.
Vandenboomgaerde
,
G.
Jourdan
,
D.
Souffland
, and
L.
Houas
, “
Investigation of the Richtmyer-Meshkov instability with stereolithographed interfaces
,”
Phys. Rev. Lett.
100
,
254503
(
2008
).
35.
O.
Heuze
and
P.
Bauer
, “
A simple method for the calculation of the detonation properties of CHNO explosives
,” in
Proceedings of Hautes Pressions Dynamiques (HDP), La Grande Motte, France 1989
(
Association Française de Pyrotechnie
,
Paris
,
1989
).
36.
L.
Munier
, “
Expérimentations et simulations des effets retardés d'une explosion en milieu clos et en présence de produits liquides
,” Ph.D. dissertation,
University Aix Marseille I
, France,
2011
.
37.
N.
Favrie
,
S.
Gavrilyuk
, and
R.
Saurel
, “
Solid-fluid diffuse interface model in cases of extreme deformations
,”
J. Comput. Phys.
228
(
16
),
6037
6077
(
2009
).
38.
F.
Petitpas
,
R.
Saurel
,
E.
Franquet
, and
A.
Chinnayya
, “
Modelling detonation waves in condensed materials: Multiphase CJ conditions and multidimensional computations
,”
Shock Waves
19
(
5
),
377
401
(
2009
).
39.
F.
Petitpas
,
J.
Massoni
,
R.
Saurel
,
E.
Lapebie
, and
L.
Munier
, “
Diffuse interface model for high speed cavitating underwater systems
,”
Int. J. Multiphase Flow
35
,
747
759
(
2009
).
40.
F.
Petitpas
,
R.
Saurel
,
B. K.
Ahn
, and
S.
Ko
, “
Modelling cavitating flow around underwater missiles
,”
Int. J. Nav. Archit. Ocean Eng.
3
,
263
273
(
2011
).
You do not currently have access to this content.