We study the dissolution of CO2 in saline aquifers. The long diffusion times can be accelerated by orders of magnitude from mass transfer that origins from convection. Convection occurs at a critical time via a phase transition from the horizontally homogeneous diffusion state. To start the instability, perturbations that break the horizontal translation symmetry are necessary. We start with the basic equations and the boundary conditions, examine the linearized equations around the diffusive time and z-dependent base state and compare different definitions of the critical time found in the literature. Taking a simple model we show the role of fluctuations for delayed instabilities if the control parameter is slowly swept through the bifurcation point. Apart from the critical time we use a “visible” time where convection is manifested in the vertical CO2 transport. We specify the perturbations with respect to their strength and length scale, and compute the critical times for various cases by numerical integration of the basic equations in two spatial dimensions. Fluctuating concentration at the upper boundary, fluctuating porosity as well fluctuating permeability are studied in detail. For the permeability fluctuation, the compressibility of the fluid becomes important and the velocity field cannot be derived from a stream function. Our work also includes non-isothermal conditions with a prescribed vertical geothermal gradient and space dependent thermal conductivity. Temperature fields for different standard configurations are computed numerically and serve as starting condition for density-driven convection. Based on our work, we conclude that the visible time is much larger than the critical time. The visible time is a strong function of strength and length scale of the perturbations.

1.
A.
Firoozabadi
and
P.
Cheng
, “
Prospects for subsurface CO2 sequestration
,”
AIChE J.
56
,
1398
(
2010
).
2.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside equilibrium
,”
Rev. Mod. Phys.
65
,
851
(
1993
).
3.
A.
Riaz
,
M.
Hesse
,
H. A.
Tchelepi
, and
F. M.
Orr
 Jr.
, “
Onset of convection in a gravitationally unstable diffusive boundary layer in porous media
,”
J. Fluid Mech.
548
,
87
(
2006
).
4.
S.
Rapaka
,
S.
Chen
,
R. J.
Pawar
,
P. H.
Stauffer
, and
D.
Zhang
, “
Non-modal growth of perturbations in density-driven convection in porous media
,”
J. Fluid Mech.
609
,
285
(
2008
).
5.
P.
Cheng
,
M.
Bestehorn
, and
A.
Firoozabadi
, “
Effect of permeability anisotropy on density-driven flow for CO2 sequestration in saline aquifers
,”
Water Resour. Res.
48
,
W09539
, doi: (
2012
).
6.
A. C.
Slim
and
T. S.
Ramakrishnan
, “
Onset and cessation of time-dependent, dissolution-driven convection in porous media
,”
Phys. Fluids
22
,
124103
(
2010
).
7.
G. S. H.
Pau
,
J. B.
Bell
,
K.
Pruess
,
A. S.
Almgren
,
M. J.
Lijewski
, and
K.
Zhang
, “
High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers
,”
Adv. Water Resour.
33
,
443
(
2010
).
8.
R.
Farajzadeh
,
P.
Ranganathan
,
P. L. J.
Zitha
, and
J.
Bruining
, “
The effect of heterogeneity on the character of density-driven natural convection of CO2 overlying a brine layer
,”
Adv. Water Resour.
34
,
327
(
2011
).
9.
X.
Xu
,
S.
Chen
, and
D.
Zhang
, “
Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers
,”
Adv. Water Resour.
29
,
397
(
2006
).
10.
J. L.
Jensen
,
L. W.
Lake
,
P. W. M.
Corbett
, and
D. J.
Goggin
,
Statistics for Petroleum Engineers and Geoscientists (Handbook of Petroleum Exploration and Production)
(
Elsevier
,
Amsterdam
,
2000
).
11.
H.
Dykstra
and
R. L.
Parsons
, “
The prediction of oil recovery by waterflood
,” in
Secondary Recovery of Oil in the United States
(
American Petroleum Institute
,
New York
,
1950
), p.
160
.
12.
E.
Lindeberg
and
D.
Wessel-Berg
, “
Vertical convection in an aquifer column under a gas cap of CO2
,”
Energy Convers. Manage.
38
,
S229
(
1997
).
13.
J.
Bear
and
Y.
Bachmat
,
Introduction to Modeling of Transport Phenomena in Porous Media
(
Kluwer
,
Dordrecht
,
1990
).
14.
D. V.
Ellis
and
J. M.
Singer
,
Well Logging for Earth Scientists
(
Springer
,
2007
).
15.
Z.
Li
and
A.
Firoozabadi
, “
Cubic-plus-association equation of state for water-containing mixtures: Is cross association necessary?
,”
AIChE J.
55
,
1803
(
2009
).
16.
S.
Chandrasekhar
,
Hydrodynamic and Hydromagnetic Stability
(
Dover
,
New York
,
1981
).
17.
E. W.
Lemmon
,
M. O.
McLinden
, and
D. G.
Friend
, “
Thermophysical properties of fluid systems
,” in
NIST Chemistry WebBook
(
NIST
,
2012
), Vol. 69.
18.
J.
Mutoru
,
A.
Leahy-Dios
, and
A.
Firoozabadi
, “
Modeling infinite dilution and Fickian diffusion coefficients of carbon dioxide in water
,”
AIChE J.
57
,
1617
(
2011
).
19.
C. A. J.
Fletcher
,
Computational Techniques for Fluid Dynamics
(
Springer
,
Berlin
,
1988
), Vol. I.
20.
R. A.
Gentry
,
R. E.
Martin
, and
B. J.
Daly
, “
An Eulerian differencing method for unsteady compressible flow problems
,”
J. Comput. Phys.
1
,
87
(
1966
).
21.
P. J.
Roache
,
Computational Fluid Dynamics
(
Hermosa
,
1976
).
22.
P. N.
Swarztrauber
, “
Vectorizing the FFTs
,” in
Parallel Computations
(
Academic
,
1982
), pp.
51
83
.
23.
W. H.
Press
,
S. A.
Teukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes: The Art of Scientific Computing
, 3rd ed. (
Cambridge University Press
,
2007
).
24.
M.
Bestehorn
, “
Phase and amplitude instabilities for Bénard-Marangoni convection in fluid layers with large aspect ratio
,”
Phys. Rev. E
48
,
3622
(
1993
).
25.
D. H.
Sharp
, “
An overview of Rayleigh-Taylor instability
,”
Physica D
12
,
3
(
1984
).
26.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
27.
C. T.
Tan
and
G. M.
Homsy
, “
Stability of miscible displacement in porous media-rectilinear flow
,”
Phys. Fluids
29
,
3549
(
1986
).
28.
K.
Ghesmat
,
H.
Hassanzadeh
, and
J.
Abedi
, “
The impact of geochemistry on convective mixing in a gravitationally unstable diffusive boundary layer in porous media
,”
J. Fluid Mech.
673
,
480
(
2011
).
29.
J. R.
Tredicce
,
G. L.
Lippi
,
P.
Mandel
,
B.
Charasse
,
A.
Chevalier
, and
B.
Picque
, “
Critical slowing down at a bifurcation
,”
Am. J. Phys.
72
,
799
(
2004
).
30.
M. C.
Torrent
and
M.
San Miguel
, “
Stochastic-dynamics characterization of delayed laser threshold instability with swept control parameter
,”
Phys. Rev. A
38
,
245
(
1988
).
31.
J. R.
Waggoner
,
J. L.
Castillo
, and
L. W.
Lake
, “
Simulation of EOR processes in stochastically generated permeable media
,”
SPE Form Eval.
7
,
173
(
1992
).
32.
A.
Montoglou
and
J. L.
Wilson
, “
The turning bands method for simulation of random fields using line generation by spectral method
,”
Water Resour. Res.
18
,
1379
, doi: (
1982
).
33.
F. J.
Molz
,
H.
Rajaram
, and
S.
Lu
, “
Stochastic fractal-based models of heterogeneity in subsurface hydrology
,”
Rev. Geophys.
42
,
RG1002
, doi: (
2004
).
34.
C. W.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1983
).
35.
P. E.
Greenwood
and
M. S.
Nikulin
,
A Guide to Chi-Squared Testing
(
Wiley
,
1996
).
36.
F. H.
Busse
, “
Transition to turbulence in Rayleigh-Benard convection
,”
Top. Appl. Phys.
45
,
97
(
1985
).
37.
H.
Nasrabadi
,
A.
Firoozabadi
,
R.
Oliveira
, and
A. J. M.
Vieira
, “
Interpretation of an unusual bubblepoint pressure variation in an offshore field
,”
SPE
113574
(
2008
).
38.
J. W.
Elder
, “
The unstable thermal interface
,”
J. Fluid Mech.
32
,
69
(
1968
).
39.
K. G. O.
Petrobras
, “
Nonisothermal gravitational equilibrium model
,”
SPE Reservoir Eval. Eng.
2
,
211
(
1999
).
40.
M.
Bestehorn
, “
Fluid dynamics and pattern formation
,” in contribution to
Encyclopedia of Complexity and System Science
, edited by
R. A.
Meyers
(
Springer
,
Berlin
,
2009
), pp.
3611
3641
.
41.
K.
Ghorayeb
and
A.
Firoozabadi
, “
Modeling multicomponent diffusion and convection and in porous media
,”
SPE J.
158
,
12
(
2000
).
42.
K.
Ghorayeb
and
A.
Firoozabadi
, “
Numerical study of natural convection and diffusion in fractured porous media
,”
SPE J.
5
,
12
(
2000
).
43.
J.
Ennis-King
,
I.
Preston
, and
L.
Paterson
, “
Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions
,”
Phys. Fluids
17
,
084107
(
2005
).
44.
T. J.
Kneafsey
and
K.
Pruess
, “
Laboratory experiments and numerical simulation studies of convectively enhanced carbon dioxide dissolution
,”
Energy Procedia
4
,
5114
(
2011
).
You do not currently have access to this content.